Курсовая работа: Трансмиссия автомобилей. Трансмиссия реферат


Курсовая работа - Трансмиссия автомобилей

Министерство образования Российской Федерации

Санкт-Петербургский государственный университет

сервиса и экономики

Реферат

Тема: «Трансмиссия автомобилей»

Выполнил

студент 3-ого курса

Специальность 100.101

Иванов В.И.

Санкт-Петербург

2010

Содержание

Введение

1. Назначение и типы

2. Механические ступенчатые трансмиссии

3. Механическая бесступенчатая трансмиссия

4. Гидрообъемная трансмиссия

5. Электрическая трансмиссия

6. Гидромеханическая трансмиссия

7. Трансмиссии автопоездов

Список использованной литературы

Введение

Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля.

Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

1. Назначение и типы

Крутящий момент Мк (рис. 1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила РТ, которая направлена в сторону движения и является движущей силой автомобиля. Тяговая сила РТ вызывает возникновение на ведущем мосту толкающей силы РХ которая от моста через подвеску передается на кузов и приводит в движение автомобиль.

В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомобиль является соответственно переднеприводным, заднеприводным и полноприводным.

Переднеприводные и заднеприводные автомобили имеют ограниченную проходимость и предназначены для эксплуатации на дорогах с твердым покрытием, на сухих грунтовых дорогах. Такие автомобили имеют колесную формулу, т.е. соотношение между общим числом колес и числом ведущих колес, с обозначением 4 х 2. В этой формуле первая цифра представляет собой общее число колес автомобиля, а вторая — число ведущих колес. Если ведущие колеса двухскатные (грузовые автомобили, автобусы) и, следовательно, общее их число равно шести, то колесная формула этих автомобилей имеет также обозначение 4x2.

Рис. 1. Движущие силы автомобиля

Полноприводные двухосные автомобили и трехосные автомобили с двумя задними ведущими мостами обладают повышенной проходимостью. Они способны двигаться по плохим дорогами и вне дорог. Их колесные формулы имеют соответственно обозначения 4 х 4 и 6 х 4.

Полноприводные трехосные и четырехосные автомобили имеют высокую проходимость. Они могут преодолевать рвы, ямы и подобные препятствия. Их колесные формулы обозначаются соответственно 6 х 6 и 8 х 8.

Колесная формула характеризует не только проходимость автомобиля, но и тип его трансмиссии.

На автомобилях применяются трансмиссии различных типов (рис. 2).

Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение.

Рис. 2. Типы трансмиссий автомобилей

Конструкция трансмиссии зависит от типа автомобиля, его назначения и взаимного расположения двигателя и ведущих колес. Характер изменения передаваемого крутящего момента в разных типах трансмиссий различен (рис. 3).

Рис. 3. Графики изменения крутящего момента в трансмиссиях:

а — ступенчатой; 6 — бесступенчатой, в — гидромеханической; I— IV — ступени скоростей; Мк — крутящий момент; v — скорость автомобиля

Трансмиссия и ее техническое состояние оказывают значительное влияние на эксплуатационные свойства автомобиля. Так, при ухудшении технического состояния механизмов трансмиссии и нарушении регулировок в сцеплении, главной передаче и дифференциале повышается сопротивление движению автомобиля и ухудшаются тягово-скоростные свойства, проходимость, топливная экономичность и экологичность автомобиля.

2. Механические ступенчатые трансмиссии

В механических ступенчатых трансмиссиях передаваемый от двигателя к ведущим колесам крутящий момент изменяется ступенчато в соответствии с передаточным числом трансмиссии (см. рис. 3, а), которое равно произведению передаточных чисел шестеренных (зубчатых) механизмов трансмиссии. Передаточным числом шестеренного механизма называется отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни.

На автомобиле с колесной формулой 4x2, передним расположением двигателя и задними ведущими колесами (рис. 4, а) в трансмиссию входят сцепление 2, коробка передач 3, карданная передача 4, главная передача 6, дифференциал 7 и полуоси 8. Крутящий момент от двигателя 1 через сцепление 2 передается к коробке передач 3, где изменяется в соответствии с включенной передачей. От коробки передач крутящий момент через карданную передачу 4 подводится к главной передаче 6 ведущего моста 5, в которой увеличивается, и далее через дифференциал 7 и полуоси 8 — к задним ведущим колесам.

Для легковых автомобилей такое взаимное расположение двигателя и механизмов трансмиссии обеспечивает равномерное распределение нагрузки между передними и задними колесами и возможность размещения сидений между ними в зоне меньших колебаний кузова. Недостатком является необходимость применения сравнительно длинной карданной передачи с промежуточной опорой.

Рис.4. Схемы механических трансмиссий автомобилей с различными колесными формулами:

а –в — 4x2; г — 4x4; д — 6x4; е — 6x6; ж — 8x8; 1 — двигатель; 2 — сцепление; 3 — коробка передач; 4 — карданная передача; 5 — ведущий мост; 6 — главная передача; 7 — дифференциал; 8 — полуоси; 9 – карданный шарнир;10 — раздаточная коробка; 11 — межосевой дифференциал

Механические трансмиссии легковых автомобилей с колесной формулой 4x2 могут иметь и другое расположение двигателя, сцепления и коробки передач у ведущего моста — задние ведущие колеса и двигатель 1 сзади (рис. 4, б) или передние ведущие колеса и двигатель спереди (рис. 4, в). Такие трансмиссии не имеют карданной передачи между коробкой передач и ведущим мостом и включают в себя сцепление 2, коробку передач 3, главную передачу, дифференциал и привод ведущих колес, который осуществляется не полуосями, а карданными передачами. При этом в приводе к ведущим управляемым колесам применяются карданные шарниры 9 равных угловых скоростей.

Эти трансмиссии просты по конструкции, компактны, имеют небольшую массу и экономичны.

Заднее расположение двигателя и трансмиссии (см. рис. 4, б) обеспечивает лучшие обзорность и размещение сидений в кузове между мостами автомобиля, лучшую изоляцию салона от шума двигателя и отработавших газов. Однако ухудшаются управляемость, Устойчивость автомобиля и безопасность водителя и переднего пассажира при наездах и столкновениях.

Переднее расположение двигателя и трансмиссии (см. рис. 4, в) улучшает управляемость и устойчивость автомобиля, но при движении на скользких подъемах дороги возможно пробуксовывание ведущих колес вследствие уменьшения на них нагрузки.

Механическая трансмиссия автомобиля с колесной формулой 4 х 4 с передним расположением двигателя / (рис. 4, г) кроме сцепления 2, коробки передач 3, карданной передачи 4 и заднего ведущего моста 5 дополнительно включает в себя передний ведущий управляемый мост и раздаточную коробку 10, соединенную с этим мостом и коробкой передач 3 карданными передачами. Крутящий момент от раздаточной коробки подводится к переднему и заднему ведущим мостам. В раздаточной коробке имеется устройство для включения привода переднего ведущего моста или межосевой дифференциал, распределяющий крутящий момент между ведущими мостами автомобиля.

Передний ведущий мост имеет главную передачу, дифференциал и привод колес в виде карданных передач с шарнирами 9 равных угловых скоростей, обеспечивающих подведение крутящего момента к передним ведущим управляемым колесам.

У автомобилей с колесной формулой 6x4 (рис. 4, д) крутящий момент к среднему (промежуточному) и заднему ведущим мостам может подводиться одним общим валом. В этом случае главная передача среднего моста имеет проходной ведущий вал.

У автомобиля с колесной формулой 6x6 (рис. 4, е) крутящий момент к среднему и заднему ведущим мостам может подводиться и раздельно — двумя валами. В раздаточной коробке этих автомобилей имеется специальное устройство для включения привода переднего моста или межосевой дифференциал 11, распределяющий крутящий момент между ведущими мостами.

Автомобили с колесной формулой 8x8 обычно имеют потележечное расположение ведущих мостов, при котором сближены ведущие мосты — первый со вторым и третий с четвертым. При этом первые два моста являются и управляемыми.

При установке двух двигателей 1 (рис. 4, ж) трансмиссия таких автомобилей имеет два сцепления 2, две коробки передач 3 и две раздаточные коробки 10 с межосевыми дифференциалами 11. При этом автомобиль может двигаться при одном работающем двигателе.

По сравнению с другими типами трансмиссий механические трансмиссии проще по конструкции, имеют меньшую массу, более экономичны, надежнее в работе и имеют высокий КПД, равный 0,8… 0,95. Недостатком их является разрыв потока мощности при переключении передач, что снижает тягово-скоростные свойства и ухудшает проходимость автомобиля. Кроме того, правильность выбора передачи и момента переключения передач зависит от квалификации водителя, а частые переключения передач в условиях города приводят к сильной утомляемости водителя. Механические трансмиссии также не обеспечивают полного использования мощности двигателя и простоты управления автомобилем.

3. Механическая бесступенчатая трансмиссия

Это фрикционная трансмиссия, в которой для плавной передачи крутящего момента от двигателя к ведущим колесам используется сила трения.

На рис. 5 приведена схема клиноременной передачи, которая представляет собой фрикционную бесступенчатую передачу.

Крутящий момент от двигателя через сцепление передается конической шестерне 14 реверс-редуктора. Эта шестерня находится в зацеплении с шестернями 13 и 10, соединяемыми с валом 12 муфтой 11, перемещающейся на шлицах вала.

На концах вала 12 установлены ведущие шкивы 9 передачи, от которых крутящий момент через зубчатые ремни 8 трапецеидального сечения передается на ведомые шкивы 7 и далее через колесные редукторы 5 на ведущие колеса автомобиля.

Передаточное число клиновой передачи, равное отношению рабочих радиусов R 2 : R 1 шкивов, зависит от положения ремня 8. Оно регулируется пружиной 6, соответственно сдвигающей половины ведомого шкива 7, и пружиной 3, раздвигающей половины ведущего шкива 9, в зависимости от частоты вращения коленчатого вала двигателя и вакуума в полости 2, соединенной трубопроводом / с впускным коллектором двигателя.

При трогании автомобиля с места пружины 3 и 6 обеспечивают наибольшее передаточное число, и в этом случае половины ведомого шкива сдвинуты, а ведущего — раздвинуты.

Рис. 5. Схема клиноременной передачи:

1 — трубопровод; 2 — полость; 3, 6 — пружины; 4 — груз; 5 — редуктор; 7, 9 – шкивы; 8 — ремень; 10, 13, 14 — шестерни; 11 — муфта; 12 — вал; R 1 R 2 – радиусы шкивов

При разгоне автомобиля действующие силы от грузов 4 центробежного регулятора и вакуума в полости 2 преодолевают силу пружин 3 и 6, сдвигают половины ведущего шкива 9 и раздвигают половины ведомого шкива 7. Таким образом, осуществляется бесступенчатое изменение передаточного числа и, следовательно, крутящего момента.

Эта передача выполняет также функции межколесного дифференциала. Передача применяется на некоторых моделях легковых автомобилей.

Механические бесступенчатые передачи не получили широкого распространения и имеют ограниченное применение на автомобилях из-за недостаточной надежности их работы.

4. Гидрообъемная трансмиссия

Этот вид трансмиссии представляет собой бесступенчатую передачу автомобиля.

В гидрообъемной трансмиссии (верхняя половина рис. 6) двигатель 1 внутреннего сгорания приводит в действие гидронасос 2, соединенный трубопроводами с гидромоторами 3, валы которых связаны с ведущими колесами автомобиля. При работе двигателя гидродинамический напор жидкости, создаваемый гидронасосом в гидромоторах ведущих колес, преобразуется в механическую работу. Ведущие колеса с гидромоторами, установленными в них, называются гидромотор-колесами.

Рабочее давление в системе в зависимости от конструкции гидроагрегатов — 10...50 МПа.

На рис. 7 представлена простейшая схема устройства и работы гидрообъемной передачи, в которой используется гидростатический напор жидкости. При вращении коленчатого вала двигателя через кривошип 2 и шатун 3 производится перемещение поршня 4 гидронасоса. Жидкость из гидронасоса через трубопровод 9 подается в цилиндр гидродвигателя, поршень 8 которого перемещает через шатун 7 кривошип 5 и приводит во вращение ведущее колесо 6.

Рис. 6. Схема гидрообъемной (верхняя половила схемы) и электрической (нижняя половина) трансмиссии:

1 — двигатель; 2 — гидронасос; 3 — гидромотор; 4 — электродвигатель; 5 — генератор

Преимуществом гидрообъемной трансмиссии является бесступенчатое автоматическое изменение ее передаточного числа и передаваемого крутящего момента, что обеспечивает плавное трогание автомобиля с места, облегчает и упрощает управление автомобилем и снижает утомляемость водителя и, следовательно, повышает безопасность движения. Она также повышает проходимость автомобиля в результате непрерывного потока мощности и плавного изменения крутящего момента.

В действительности гидрообъемные передачи, применяемые на автомобилях, гораздо сложнее, чем представленная на рис. 7. Так, они включают роторные гидронасосы плунжерного типа, колесные гидродвигатели, магистрали высокого и низкого давления, редукционные клапаны, охладитель, дренажную и подпитывающую системы (резервуар, фильтр, охладитель, насос, редукционный и предохранительный клапаны).

Рис. 7. Схема гидрообъемной передачи:

1 — двигатель; 2, 5 — кривошипы; 3, 7 — шатуны; 4, 8 — поршни; 6 — колесо; 9 — трубопровод

По сравнению с механической гидрообъемная трансмиссия имеет большие габаритные размеры и массу, меньшие КПД, долговечность и более высокую стоимость. Она сложна в изготовлении и требует надежных уплотнений.

5. Электрическая трансмиссия

Это бесступенчатая передача, в которой крутящий момент измеряется плавно, без участия водителя, в зависимости от сопротивления дороги и частоты вращения коленчатого вала двигателя.

В электрической трансмиссии (см. нижнюю половину рис. 6) двигатель 1 внутреннего сгорания приводит в действие генератор 5. Ток от генератора поступает к электродвигателям 4 ведущих колес автомобиля.

Ведущее колесо (рис. 8) с установленным внутри электродвигателем 1 называется электромотор-колесом. Крутящий момент от электродвигателя к колесу передается через колесный редуктор 2. При применении быстроходных электродвигателей в ведущих колесах используются понижающие зубчатые передачи.

Преимуществом электрических трансмиссий является бесступенчатое автоматическое изменение ее передаточного числа. Это обеспечивает плавное трогание автомобиля с места, упрощает и облегчает управление автомобилем и снижает утомляемость водителя, в результате повышается безопасность движения. Кроме того, повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. Повышается также долговечность двигателя из-за уменьшения динамических нагрузок и отсутствия жесткой связи между двигателем и ведущими колесами. Однако у электрических трансмиссий КПД не превышает 0,75, что ухудшает тягово-скоростные свойства автомобиля. Кроме того, расход топлива по сравнению с механическими трансмиссиями повышается на 10...20 %. Электрические трансмиссии также имеют большую массу и высокую стоимость.

Рис. 8. Электромотор-колесо:

1 — электродвигатель; 2 — редуктор

6. Гидромеханическая трансмиссия

Это комбинированная трансмиссия, которая состоит из механизмов механической и гидравлической трансмиссий. В гидромеханической трансмиссии передаточное число и крутящий момент изменяются ступенчато и плавно (см. рис. 3, в).

В гидромеханическую трансмиссию (рис. 9) входят гидромеханическая коробка передач 2, включающая гидротрансформатор и механическую коробку передач, карданная передача 3, главная передача 4, дифференциал 5 и полуоси 6.

Гидротрансформатор устанавливают вместо сцепления, и в нем передача крутящего момента от двигателя 1 к трансмиссии происходит за счет гидродинамического (скоростного) напора жидкости. Гидротрансформатор плавно автоматически изменяет крутящий момент в зависимости от нагрузки. При этом крутящий момент от гидротрансформатора передается к механической коробке передач, в которой передачи включаются с помощью фрикционных механизмов. Применение гидротрансформатора обеспечивает плавное трогание автомобиля с места, уменьшает число переключений передач, что снижает утомляемость водителя, улучшает проходимость автомобиля, почти в два раза повышается долговечность двигателя и механизмов трансмиссии вследствие уменьшения в трансмиссии динамических нагрузок и крутильных колебаний. Снижается также вероятность остановки двигателя при резком увеличении нагрузки.

Рис. 9. Схема гидромеханической трансмиссии:

1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуоси

Недостатком гидромеханической трансмиссии являются более низкий КПД, что ухудшает тягово-скоростные свойства и топливную экономичность автомобиля, более сложная конструкция и большая масса, а также высокая стоимость в производстве, которая составляет около 10 % стоимости автомобиля.

Электромеханическая трансмиссия. Это комбинированная трансмиссия, которая состоит из элементов механической и электрической трансмиссий.

На рис. 10 показана схема электромеханической трансмиссии автобуса большой вместимости. Двигатель 4 внутреннего сгорания расположен в задней части автобуса и приводит в действие генератор 5. Ток, вырабатываемый генератором, подводится к электродвигателю 1. Крутящий момент от электродвигателя через карданную передачу 2 подводится к ведущему мосту 3 и далее через главную передачу, дифференциал и полуоси к ведущим колесам автобуса. Сцепление и коробка передач в трансмиссии отсутствуют, так как при возрастании сопротивления дороги уменьшается частота вращения электродвигателя и автоматически увеличивается крутящий момент, подводимый к ведущим колесам автобуса.

Режим работы двигателя в различных дорожных условиях зависит только от подачи топлива, которая осуществляется педалью. Отсутствие педали сцепления и рычагов переключения коробки передач существенно облегчает работу водителя автобуса, который в условиях города работает с частыми остановками. Кроме того, электромеханическая трансмиссия повышает проходимость и безопасность движения. Недостатками электромеханической трансмиссии по сравнению с механической являются меньший КПД, не превышающий 0,85, что ухудшает тягово-скоростные свойства и топливную экономичность (расход топлива увеличивается на 15… 20 %), а также большие габаритные размеры и масса.

Рис. 10. Схема электромеханической трансмиссии:

1 – электродвигатель; 2 — карданная передача; 3 — ведущий мост; 4 — двигатель; 5 — генератор

7. Трансмиссии автопоездов

Автопоезда, состоящие из автомобиля-тягача и прицепов или полуприцепов, могут иметь различного типа трансмиссии в зависимости от назначения автопоезда. Так, на автопоездах, предназначенных для работы по дорогам с твердым покрытием, трансмиссию имеет только автомобиль-тягач. На автопоездах, рассчитанных на работу в условиях бездорожья, для повышения их проходимости прицепы и полуприцепы обычно оборудуются ведущими мостами. Мощность и крутящий момент к этим мостам могут подводиться от двигателя автомобиля-тягача через механическую, гидравлическую или электрическую передачи.

Для привода дополнительного оборудования автопоезда (лебедки, насоса подъема грузового кузова и др.) в трансмиссии имеется коробка отбора мощности, которая присоединяется к коробке передач.

Список использованной литературы

1. Сарбаев В.И. Техническое обслуживание и ремонт автомобилей. − Ростов н/Д: «Феникс», 2004.

2. Вахламов В.К. Техника автомобильного транспорта. − М.: «Академия», 2004.

3. Барашков И.В. Бригадная организация технического обслуживания и ремонта автомобилей. – М.: Транспорт, 1988г.

www.ronl.ru

Трансмиссия — реферат

     3.1 Карданная передача.

       Карданная передача автомобиля  служит для передачи крутящего  момента от коробки  передач на главную передачу заднего ведущего моста при изменяющемся угле между осями вторичного вала коробки передач и ведущего вала главной передачи.

       Карданная передача состоит из  переднего (промежуточного) вала, промежуточной  опоры и заднего вала.

       Промежуточный карданный вал  - стальной. Он сварен из тонкостенной трубы и наконечников. На передний наконечник, имеющий шлицевую часть, надета стальная скользящая втулка, которая соединена с вилкой вторичного вала коробки передач через упругую резиновую муфту. Наличие в трансмиссии упругой муфты позволяет не только передавать крутящий момент при незначительных изменениях угла между осью вторичного вала коробки передач и осью подшипника промежуточной опоры, но и защищает трансмиссию от жестких ударов.

         Передняя часть промежуточного  вала сцентрирована относительно  вторичного вала коробки передач  при помощи центрирующего кольца, на которое при установке вала надевается запрессованная в скользящую вилку стальная центрирующая втулка.

        Передняя часть шлицевого соединения  уплотнена резиновым кольцом специального профиля, имеющимся на вторичном валу коробки передач.

       Задний карданный вал в отличие  от промежуточного имеет два  карданных шарнира, посредством которых он соединен своей передней частью с промежуточным валом, а задней частью - с ведущим валом главной передачи. Вал этот изготовлен из стальной тонкостенной трубы, к которой с обеих сторон приварены кованые вилки. Как промежуточный, так и задний карданные валы после сборки динамически отбалансированы; приваренные к ним металлические пластины служат для устранения дисбаланса. Каждый из двух карданных шарниров состоит из двух вилок, расположенных под углом 90 градусов друг к другу и соединенных крестовиной, и четырех игольчатых подшипников.

      4.1 Задний мост.

       Задний мост автомобиля агрегатирован  и состоит из главной передачи  с  дифференциалом и полуосей, помещенных в картер (балку) заднего  моста. Указанные механизмы позволяют  увеличить крутящий момент, подводимый  карданной передачей. и передают  его под углом 90 градусов к  ведущим колесам автомобиля.

           Картер заднего моста состоит  из верхней и нижней половин,  отштампованных из листовой связи и сваренных между собой двумя продольными швами. К концам картера, имеющим форму труб, приварены два стальных кованых фланца, в которых расточены гнезда для установки подшипников полуосей, сальников и обработаны отверстия для четырех болтов, которыми к картеру крепятся пластины и щиты тормозов. К консольным частям верхней половины картера приварены две подушки для установки пружин подвески, кронштейны для крепления верхних штанг подвески, кронштейн для рычага привода регулятора давления задних тормозов и некоторые другие детали.

        К консольным частям нижней  половины картера прикреплены  сваркой кронштейны крепления нижних штанг и амортизаторов задней подвески.

       Механизм главной передачи с  дифференциалом заднего моста  размещен в чугунном литом картере. При монтаже он устанавливается в картер заднего моста таким образом, что в собранном виде образуется единая жесткая система, имеющая собственную масляную ванну.

        К балке заднего моста крепится  редуктор, в котором и расположены  главная передача и дифференциал. Ведущая и ведомая шестерни  главной передачи спарены по контакту и шуму, поэтому при повреждении одной из них заменяются обе.          

     Глава  2:  Трансмиссия  современного  автомобиля(автоматическая трансмиссия).

     Улучшение эксплуатационных качеств современного автомобиля привело к значительному усложнению его конструкции. А оснащение автомобилей автоматической трансмиссией позволило резко снизить объем нагрузки, возлагаемой на водителя во время движения, что также благоприятно отразилось на ходовой части, двигателе и скоростных качествах автомобиля. Надежность и простота эксплуатации определили дальнейшее широкое использование этого изобретения. В настоящее время автоматические трансмиссии применяются и на легковых, и на полноприводных автомобилях, и даже на грузовом транспорте. При использовании транспортного средства с ручным управлением, для поддержания необходимой скорости, водителю необходимо часто пользоваться рычагом переключения передач.

           
     автоматическая  коробка передач 

     переднеприводного автомобиля

     автоматическая  коробка передач

     заднеприводного автомобиля

           

     По  этой причине он обязан постоянно  следить за нагрузкой двигателя  и скоростью автомобиля. Применение автоматической трансмиссии исключает  необходимость постоянного пользования  переключающим рычагом. Изменение скорости выполняется автоматически, в зависимости от нагрузки двигателя, скорости перемещения транспортного средства и желаний водителя. Поэтому, по сравнению с ручной коробкой передач, автоматическая трансмиссия имеет следующие неоспоримые преимущества:

     увеличивает комфортность вождения автомобиля за счет освобождения водителя от контрольных  функций;

     автоматически и плавно производит переключения, согласовывая нагрузку двигателя, скорость его движения, степень нажатия на педаль газа;

     предохраняет  двигатель и ходовую часть  автомобиля от перегрузок;

     допускает и ручное, и автоматическое переключение скоростей.

     Все разнообразие автоматических трансмиссий, применяемых сегодня, условно можно  разделить на два типа. Основное различие этих типов заключается в системах управления и контроля за использованием трансмиссии. Для первого типа характерно то, что функции управления и контроля выполняются специальным гидравлическим устройством. А во втором типе функции управления и контроля выполняет электронное устройство. Составные части же и узлы автоматических трансмиссий обоих типов практически одинаковы. Существуют некоторые различия в компоновке и устройстве автоматической трансмиссии переднеприводного и заднеприводного автомобиля. Автоматическая трансмиссия для переднеприводных автомобилей более компактна и имеет внутри своего корпуса отделение главной передачи -- дифференциал. Несмотря на эти отличия, основные функции и принцип действия всех автоматов одинаковы. Для того чтобы обеспечить движение, а также для выполнения других своих функций, автоматическая трансмиссия должна быть оснащена следующими узлами: механизмом выбора режима движения, гидротрансформатором, коробкой передач, узлом управления и контроля.   

     Упрощённая  кинематическая схема АКПП

     АКПП   состоит  из: 1) Гидротрансформатор (ГТ) – соответствует сцеплению в механической трансмиссии , но не требует непосредственного управления  со  стороны  водителя. 2) Планетарный ряд - соответствует блоку шестерен в механической коробке передач и служит для изменения передаточного отношения в автоматической трансмиссии при переключении  передач. 3) Тормозная лента, передний фрикцион, задний фрикцион – компоненты, посредством которых осуществляется переключение  передач. 4) Устройство управления.  Этот узел состоит из маслосборника (поддон коробки передач), шестеренчатого насоса и клапанной коробки. Клапанная коробка представляет собой систему каналов с расположенными в них клапанами и плунжерами, которые выполняют функции контроля и управления. Это устройство преобразует скорость движения автомобиля, нагрузку двигателя и степень нажатия на педаль газа в гидравлические сигналы. На основе этих сигналов, за счет последовательного включения и выхода из рабочего состояния фрикционных блоков, автоматически изменяются передаточные отношения в коробке передач.

     

     Гидротрансформатор (или torque converter в зарубежных источниках) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки передач. Он установлен в промежуточном кожухе, между двигателем и коробкой передач и выполняет функции обычного сцепления. В процессе работы этот узел, наполненный трансмиссионной жидкостью, несет довольно  высокие нагрузки и вращается с достаточно большой скоростью. Он не только передает крутящий момент, поглощает и сглаживает вибрации двигателя, но и приводит в действие масляный насос, находящийся в корпусе коробки передач. Масляный насос наполняет трансмиссионной жидкостью гидротрансформатор и создает рабочее давление в системе управления и контроля. Поэтому является неверным мнение о том, что автомобиль, оснащенный автоматической трансмиссией, можно завести принудительно, не используя стартер, а разогнав его до высокой скорости. Шестеренчатый насос получает энергию только от двигателя, и если двигатель не работает, то давление в системе управления и контроля не создается, в каком бы положении не находился рычаг выбора режима движения. Следовательно, принудительное вращение карданного вала не обязывает коробку передач работать, а двигатель - вращаться.

     

     Планетарный ряд  в отличие от простой механической трансмиссии, в которой используются параллельные валы и сцепляющиеся между собой шестерни, в автоматических трансмиссиях в подавляющем большинстве используются планетарные передачи.

     

     Составные части фрикционаПоршень (piston) приводится в действие давлением масла. Двигаясь под давлением масла вправо (по рисунку), поршень посредством конического диска (dished plate) плотно прижимает ведущие диски пакета к ведомым, заставляя их вращаться как единое целое и осуществляя передачу крутящего момента от барабана к втулке. В корпусе самой коробки передач расположены несколько планетарных механизмов, они и обеспечивают необходимые передаточные отношения. А передача крутящего момента от двигателя через планетарные механизмы к колесам происходит с помощью фрикционных дисков, дифференциала и других сервисных устройств. Управление всеми этими устройствами осуществляется благодаря трансмиссионной жидкости через систему управления и контроля.

     

     Тормозная лента Устройство, используемое для блокировки элементов планетарного ряда.    

                                                 Заключение.

     В заключение лишь остается проанализировать все выше сказанное и сделать  вывод. Рассмотрев две разновидности  строения трансмиссий, классическую и современную, можно говорить о том, что каждая представленная модель имеет свои особенности и преимущества по отношению друг к другу. На данный момент можно сказать большинство производителей современных автомобилей останавливается на производстве автоматический трансмиссий, аргументируя это тем, что такая конструкция более удобна и конфортабельна, но стоить заметить что такой вид трансмиссии более приемлем для езды по ровному покрытию. Но до сих пор многие конструкторы различных автопромов останавливают свое внимание на классической схеме трансмиссии, опираясь на простоту и надежность данной модели.                  

    Список  использованной литературы.

    1. Гаврилов К.Л. Моторная диагностика: учебно – практическое пособие.-М.,2005.

    2. Дмитриев В.Я. Устройство автомобиля  в вопросах и ответах, Омск, 2004.

    3. Пехальский А.П. Устройство автомобилей: Учебник для студ. учреждений сред. проф. образования, М.,2005.

    4.Хараман С. В., Метелкин В. В. Практическое обучение вождения автомобиля: Учебно – методическое пособие / Под редакцией В.М. Рудника.,М,2002.

    5. Шестопалов С. К. Устройство, техническое обслуживание и ремонт легковых автомобилей: Учебник для нач. проф. образования,  М.,2003.                            

                                            Содержание.

    1.Введение  …………………………………………………………. 2

    2. Общие сведения и строение  классической трансмиссии…….. 3

    2. 1.Сцепление……………………………………………………....  4

    2. 2. Коробка передач……………………………………………... 6

    2. 3. Карданная передача…………………………………………. 8

    2. 4.Задний мост…………………………………………………… 9

freepapers.ru

Реферат на тему Трансмиссия автомобилей

Министерство образования Российской Федерации Санкт-Петербургский государственный университет сервиса и экономики Реферат Тема: «Трансмиссия автомобилей» Выполнил студент 3-ого курса Специальность 100.101 Иванов В.И. Санкт-Петербург 2010

Содержание Введение 1. Назначение и типы 2. Механические ступенчатые трансмиссии 3. Механическая бесступенчатая трансмиссия 4. Гидрообъемная трансмиссия 5. Электрическая трансмиссия 6. Гидромеханическая трансмиссия 7. Трансмиссии автопоездов Список использованной литературы Введение Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля. Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

1. Назначение и типы Крутящий момент Мк(рис. 1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила РТ, которая направлена в сторону движения и является движущей силой автомобиля. Тяговая сила РТ  вызывает возникновение на ведущем мосту толкающей силы РХ  которая от моста через подвеску передается на кузов и приводит в движение автомобиль. В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомобиль является соответственно переднеприводным, заднеприводным и полноприводным. Переднеприводные и заднеприводные автомобили имеют ограниченную проходимость и предназначены для эксплуатации на дорогах с твердым покрытием, на сухих грунтовых дорогах. Такие автомобили имеют колесную формулу, т.е. соотношение между общим числом колес и числом ведущих колес, с обозначением 4 х 2. В этой формуле первая цифра представляет собой общее число колес автомобиля, а вторая — число ведущих колес. Если ведущие колеса двухскатные (грузовые автомобили, автобусы) и, следовательно, общее их число равно шести, то колесная формула этих автомобилей имеет также обозначение 4x2. Рис. 1. Движущие силы автомобиля Полноприводные двухосные автомобили и трехосные автомобили с двумя задними ведущими мостами обладают повышенной проходимостью. Они способны двигаться по плохим дорогами и вне дорог. Их колесные формулы имеют соответственно обозначения 4 х 4 и 6 х 4. Полноприводные трехосные и четырехосные автомобили имеют высокую проходимость. Они могут преодолевать рвы, ямы и подобные препятствия. Их колесные формулы обозначаются соответственно 6 х 6 и 8 х 8. Колесная формула характеризует не только проходимость автомобиля, но и тип его трансмиссии. На автомобилях применяются трансмиссии различных типов (рис. 2). Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение. Рис. 2. Типы трансмиссий автомобилей Конструкция трансмиссии зависит от типа автомобиля, его назначения и взаимного расположения двигателя и ведущих колес. Характер изменения передаваемого крутящего момента в разных типах трансмиссий различен (рис. 3).

Рис. 3. Графики изменения крутящего момента в трансмиссиях: а — ступенчатой; 6 — бесступенчатой, в — гидромеханической; I— IV — ступени скоростей; Мк — крутящий момент; v — скорость автомобиля Трансмиссия и ее техническое состояние оказывают значительное влияние на эксплуатационные свойства автомобиля. Так, при ухудшении технического состояния механизмов трансмиссии и нарушении регулировок в сцеплении, главной передаче и дифференциале повышается сопротивление движению автомобиля и ухудшаются тягово-скоростные свойства, проходимость, топливная экономичность и экологичность автомобиля. 2. Механические ступенчатые трансмиссии В механических ступенчатых трансмиссиях передаваемый от двигателя к ведущим колесам крутящий момент изменяется ступенчато в соответствии с передаточным числом трансмиссии (см. рис. 3, а), которое равно произведению передаточных чисел шестеренных (зубчатых) механизмов трансмиссии. Передаточным числом шестеренного механизма называется отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни. На автомобиле с колесной формулой 4x2, передним расположением двигателя и задними ведущими колесами (рис. 4, а) в трансмиссию входят сцепление 2, коробка передач 3, карданная передача 4, главная передача 6, дифференциал 7 и полуоси 8. Крутящий момент от двигателя 1 через сцепление 2 передается к коробке передач 3, где изменяется в соответствии с включенной передачей. От коробки передач крутящий момент через карданную передачу 4 подводится к главной передаче 6 ведущего моста 5, в которой увеличивается, и далее через дифференциал 7 и полуоси 8 — к задним ведущим колесам. Для легковых автомобилей такое взаимное расположение двигателя и механизмов трансмиссии обеспечивает равномерное распределение нагрузки между передними и задними колесами и возможность размещения сидений между ними в зоне меньших колебаний кузова. Недостатком является необходимость применения сравнительно длинной карданной передачи с промежуточной опорой.       Рис.4. Схемы механических трансмиссий автомобилей с различными колесными формулами: а –в — 4x2; г — 4x4; д — 6x4; е — 6x6; ж — 8x8; 1 — двигатель; 2 —сцепление; 3 — коробка передач; 4 — карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 – карданный шарнир;10 — раздаточная коробка;  11 — межосевой дифференциал

Механические трансмиссии легковых автомобилей с колесной формулой 4x2 могут иметь и другое расположение двигателя, сцепления и коробки передач у ведущего моста — задние ведущие колеса и двигатель 1 сзади (рис. 4, б) или передние ведущие колеса и двигатель спереди (рис. 4, в). Такие трансмиссии не имеют карданной передачи между коробкой передач и ведущим мостом и включают в себя сцепление 2, коробку передач 3, главную передачу, дифференциал и привод ведущих колес, который осуществляется не полуосями, а карданными передачами. При этом в приводе к ведущим управляемым колесам применяются карданные шарниры 9 равных угловых скоростей. Эти трансмиссии просты по конструкции, компактны, имеют небольшую массу и экономичны. Заднее расположение двигателя и трансмиссии (см. рис. 4, б) обеспечивает лучшие обзорность и размещение сидений в кузове между мостами автомобиля, лучшую изоляцию салона от шума двигателя и отработавших газов. Однако ухудшаются управляемость, Устойчивость автомобиля и безопасность водителя и переднего пассажира при наездах и столкновениях. Переднее расположение двигателя и трансмиссии (см. рис. 4, в) улучшает управляемость и устойчивость автомобиля, но при движении на скользких подъемах дороги возможно пробуксовывание ведущих колес вследствие уменьшения на них нагрузки. Механическая трансмиссия автомобиля с колесной формулой 4 х 4 с передним расположением двигателя / (рис. 4, г) кроме сцепления 2, коробки передач 3, карданной передачи 4 и заднего ведущего моста 5 дополнительно включает в себя передний ведущий управляемый мост и раздаточную коробку 10, соединенную с этим мостом и коробкой передач 3 карданными передачами. Крутящий момент от раздаточной коробки подводится к переднему и заднему ведущим мостам. В раздаточной коробке имеется устройство для включения привода переднего ведущего моста или межосевой дифференциал, распределяющий крутящий момент между ведущими мостами автомобиля. Передний ведущий мост имеет главную передачу, дифференциал и привод колес в виде карданных передач с шарнирами 9 равных угловых скоростей, обеспечивающих подведение крутящего момента к передним ведущим управляемым колесам. У автомобилей с колесной формулой 6x4 (рис. 4, д) крутящий момент к среднему (промежуточному) и заднему ведущим мостам может подводиться одним общим валом. В этом случае главная передача среднего моста имеет проходной ведущий вал. У автомобиля с колесной формулой 6x6 (рис. 4, е) крутящий момент к среднему и заднему ведущим мостам может подводиться и раздельно — двумя валами. В раздаточной коробке этих автомобилей имеется специальное устройство для включения привода переднего моста или межосевой дифференциал 11, распределяющий крутящий момент между ведущими мостами. Автомобили с колесной формулой 8x8 обычно имеют потележечное расположение ведущих мостов, при котором сближены ведущие мосты — первый со вторым и третий с четвертым. При этом первые два моста являются и управляемыми. При установке двух двигателей 1 (рис. 4, ж) трансмиссия таких автомобилей имеет два сцепления 2, две коробки передач 3 и две раздаточные коробки 10 с межосевыми дифференциалами 11. При этом автомобиль может двигаться при одном работающем двигателе. По сравнению с другими типами трансмиссий механические трансмиссии проще по конструкции, имеют меньшую массу, более экономичны, надежнее в работе и имеют высокий КПД, равный 0,8... 0,95. Недостатком их является разрыв потока мощности при переключении передач, что снижает тягово-скоростные свойства и ухудшает проходимость автомобиля. Кроме того, правильность выбора передачи и момента переключения передач зависит от квалификации водителя, а частые переключения передач в условиях города приводят к сильной утомляемости водителя. Механические трансмиссии также не обеспечивают полного использования мощности двигателя и простоты управления автомобилем. 3. Механическая бесступенчатая трансмиссия Это фрикционная трансмиссия, в которой для плавной передачи крутящего момента от двигателя к ведущим колесам используется сила трения. На рис. 5 приведена схема клиноременной передачи, которая представляет собой фрикционную бесступенчатую передачу. Крутящий момент от двигателя через сцепление передается конической шестерне 14 реверс-редуктора. Эта шестерня находится в зацеплении с шестернями 13 и 10, соединяемыми с валом 12 муфтой 11, перемещающейся на шлицах вала. На концах вала 12 установлены ведущие шкивы 9 передачи, от которых крутящий момент через зубчатые ремни 8 трапецеидального сечения передается на ведомые шкивы 7 и далее через колесные редукторы 5 на ведущие колеса автомобиля. Передаточное число клиновой передачи, равное отношению рабочих радиусов R2:R1 шкивов, зависит от положения ремня 8. Оно регулируется пружиной 6, соответственно сдвигающей половины ведомого шкива 7, и пружиной 3, раздвигающей половины ведущего шкива 9, в зависимости от частоты вращения коленчатого вала двигателя и вакуума в полости 2, соединенной трубопроводом / с впускным коллектором двигателя. При трогании автомобиля с места пружины 3 и 6 обеспечивают наибольшее передаточное число, и в этом случае половины ведомого шкива сдвинуты, а ведущего — раздвинуты. Рис. 5. Схема клиноременной передачи: 1 — трубопровод; 2 — полость; 3, 6 — пружины; 4 — груз; 5 — редуктор; 7, 9 – шкивы; 8 — ремень; 10, 13, 14 — шестерни; 11 — муфта; 12 — вал; R1 R2 – радиусы шкивов При разгоне автомобиля действующие силы от грузов 4 центробежного регулятора и вакуума в полости 2 преодолевают силу пружин 3 и 6, сдвигают половины ведущего шкива 9 и раздвигают половины ведомого шкива 7. Таким образом, осуществляется бесступенчатое изменение передаточного числа и, следовательно, крутящего момента. Эта передача выполняет также функции межколесного дифференциала. Передача применяется на некоторых моделях легковых автомобилей. Механические бесступенчатые передачи не получили широкого распространения и имеют ограниченное применение на автомобилях из-за недостаточной надежности их работы. 4. Гидрообъемная трансмиссия Этот вид трансмиссии представляет собой бесступенчатую передачу автомобиля. В гидрообъемной трансмиссии (верхняя половина рис. 6) двигатель 1 внутреннего сгорания приводит в действие гидронасос 2, соединенный трубопроводами с гидромоторами 3, валы которых связаны с ведущими колесами автомобиля. При работе двигателя гидродинамический напор жидкости, создаваемый гидронасосом в гидромоторах ведущих колес, преобразуется в механическую работу. Ведущие колеса с гидромоторами, установленными в них, называются гидромотор-колесами. Рабочее давление в системе в зависимости от конструкции гидроагрегатов — 10...50 МПа. На рис. 7 представлена простейшая схема устройства и работы гидрообъемной передачи, в которой используется гидростатический напор жидкости. При вращении коленчатого вала двигателя через кривошип 2 и шатун 3 производится перемещение поршня 4 гидронасоса. Жидкость из гидронасоса через трубопровод 9 подается в цилиндр гидродвигателя, поршень 8 которого перемещает через шатун 7 кривошип 5 и приводит во вращение ведущее колесо 6. Рис. 6. Схема гидрообъемной (верхняя половила схемы) и электрической (нижняя половина) трансмиссии: 1 — двигатель; 2 — гидронасос; 3 — гидромотор; 4 — электродвигатель; 5 — генератор Преимуществом гидрообъемной трансмиссии является бесступенчатое автоматическое изменение ее передаточного числа и передаваемого крутящего момента, что обеспечивает плавное трогание автомобиля с места, облегчает и упрощает управление автомобилем и снижает утомляемость водителя и, следовательно, повышает безопасность движения. Она также повышает проходимость автомобиля в результате непрерывного потока мощности и плавного изменения крутящего момента. В действительности гидрообъемные передачи, применяемые на автомобилях, гораздо сложнее, чем представленная на рис. 7. Так, они включают роторные гидронасосы плунжерного типа, колесные гидродвигатели, магистрали высокого и низкого давления, редукционные клапаны, охладитель, дренажную и подпитывающую системы (резервуар, фильтр, охладитель, насос, редукционный и предохранительный клапаны). Рис. 7. Схема гидрообъемной передачи: 1 — двигатель; 2, 5 — кривошипы; 3, 7 — шатуны; 4, 8 — поршни; 6 —колесо; 9 — трубопровод По сравнению с механической гидрообъемная трансмиссия имеет большие габаритные размеры и массу, меньшие КПД, долговечность и более высокую стоимость. Она сложна в изготовлении и требует надежных уплотнений. 5. Электрическая трансмиссия Это бесступенчатая передача, в которой крутящий момент измеряется плавно, без участия водителя, в зависимости от сопротивления дороги и частоты вращения коленчатого вала двигателя. В электрической трансмиссии (см. нижнюю половину рис. 6) двигатель 1 внутреннего сгорания приводит в действие генератор 5. Ток от генератора поступает к электродвигателям 4 ведущих колес автомобиля. Ведущее колесо (рис. 8) с установленным внутри электродвигателем 1 называется электромотор-колесом. Крутящий момент от электродвигателя к колесу передается через колесный редуктор 2. При применении быстроходных электродвигателей в ведущих колесах используются понижающие зубчатые передачи. Преимуществом электрических трансмиссий является бесступенчатое автоматическое изменение ее передаточного числа. Это обеспечивает плавное трогание автомобиля с места, упрощает и облегчает управление автомобилем и снижает утомляемость водителя, в результате повышается безопасность движения. Кроме того, повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. Повышается также долговечность двигателя из-за уменьшения динамических нагрузок и отсутствия жесткой связи между двигателем и ведущими колесами. Однако у электрических трансмиссий КПД не превышает 0,75, что ухудшает тягово-скоростные свойства автомобиля. Кроме того, расход топлива по сравнению с механическими трансмиссиями повышается на 10...20 %. Электрические трансмиссии также имеют большую массу и высокую стоимость. Рис. 8. Электромотор-колесо: 1 — электродвигатель; 2 — редуктор

6. Гидромеханическая трансмиссия Это комбинированная трансмиссия, которая состоит из механизмов механической и гидравлической трансмиссий. В гидромеханической трансмиссии передаточное число и крутящий момент изменяются ступенчато и плавно (см. рис. 3, в). В гидромеханическую трансмиссию (рис. 9) входят гидромеханическая коробка передач 2, включающая гидротрансформатор и механическую коробку передач, карданная передача 3, главная передача 4, дифференциал 5 и полуоси 6. Гидротрансформатор устанавливают вместо сцепления, и в нем передача крутящего момента от двигателя 1 к трансмиссии происходит за счет гидродинамического (скоростного) напора жидкости. Гидротрансформатор плавно автоматически изменяет крутящий момент в зависимости от нагрузки. При этом крутящий момент от гидротрансформатора передается к механической коробке передач, в которой передачи включаются с помощью фрикционных механизмов. Применение гидротрансформатора обеспечивает плавное трогание автомобиля с места, уменьшает число переключений передач, что снижает утомляемость водителя, улучшает проходимость автомобиля, почти в два раза повышается долговечность двигателя и механизмов трансмиссии вследствие уменьшения в трансмиссии динамических нагрузок и крутильных колебаний. Снижается также вероятность остановки двигателя при резком увеличении нагрузки.

Рис. 9. Схема гидромеханической трансмиссии: 1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуоси Недостатком гидромеханической трансмиссии являются более низкий КПД, что ухудшает тягово-скоростные свойства и топливную экономичность автомобиля, более сложная конструкция и большая масса, а также высокая стоимость в производстве, которая составляет около 10 % стоимости автомобиля. Электромеханическая трансмиссия. Это комбинированная трансмиссия, которая состоит из элементов механической и электрической трансмиссий. На рис. 10 показана схема электромеханической трансмиссии автобуса большой вместимости. Двигатель 4 внутреннего сгорания расположен в задней части автобуса и приводит в действие генератор 5. Ток, вырабатываемый генератором, подводится к электродвигателю 1. Крутящий момент от электродвигателя через карданную передачу 2 подводится к ведущему мосту 3 и далее через главную передачу, дифференциал и полуоси к ведущим колесам автобуса. Сцепление и коробка передач в трансмиссии отсутствуют, так как при возрастании сопротивления дороги уменьшается частота вращения электродвигателя и автоматически увеличивается крутящий момент, подводимый к ведущим колесам автобуса. Режим работы двигателя в различных дорожных условиях зависит только от подачи топлива, которая осуществляется педалью. Отсутствие педали сцепления и рычагов переключения коробки передач существенно облегчает работу водителя автобуса, который в условиях города работает с частыми остановками. Кроме того, электромеханическая трансмиссия повышает проходимость и безопасность движения. Недостатками электромеханической трансмиссии по сравнению с механической являются меньший КПД, не превышающий 0,85, что ухудшает тягово-скоростные свойства и топливную экономичность (расход топлива увеличивается на 15... 20 %), а также большие габаритные размеры и масса. Рис. 10. Схема электромеханической трансмиссии: 1 – электродвигатель; 2 — карданная передача; 3 — ведущий мост; 4 — двигатель; 5 — генератор 7. Трансмиссии автопоездов Автопоезда, состоящие из автомобиля-тягача и прицепов или полуприцепов, могут иметь различного типа трансмиссии в зависимости от назначения автопоезда. Так, на автопоездах, предназначенных для работы по дорогам с твердым покрытием, трансмиссию имеет только автомобиль-тягач. На автопоездах, рассчитанных на работу в условиях бездорожья, для повышения их проходимости прицепы и полуприцепы обычно оборудуются ведущими мостами. Мощность и крутящий момент к этим мостам могут подводиться от двигателя автомобиля-тягача через механическую, гидравлическую или электрическую передачи. Для привода дополнительного оборудования автопоезда (лебедки, насоса подъема грузового кузова и др.) в трансмиссии имеется коробка отбора мощности, которая присоединяется к коробке передач.

Список использованной литературы 1. Сарбаев В.И. Техническое обслуживание и ремонт автомобилей. − Ростов н/Д: «Феникс», 2004. 2. Вахламов В.К. Техника автомобильного транспорта. − М.: «Академия», 2004. 3. Барашков И.В. Бригадная организация технического обслуживания и ремонта автомобилей. – М.: Транспорт, 1988г.

bukvasha.ru

Реферат: Трансмиссия автомобилей

Выполнил

студент 3-ого курса

Специальность 100.101

Иванов В.И.

Санкт-Петербург

2010

Содержание

Возможно вы искали - Курсовая работа: Трансмиссия автомобиля ЗИЛ-133ГЯ

Введение

1. Назначение и типы

2. Механические ступенчатые трансмиссии

3. Механическая бесступенчатая трансмиссия

Похожий материал - Курсовая работа: Трансмиссия автомобиля ИЖ 21251

4. Гидрообъемная трансмиссия

5. Электрическая трансмиссия

6. Гидромеханическая трансмиссия

7. Трансмиссии автопоездов

Список использованной литературы

Введение

Очень интересно - Реферат: Трансмиссия автомобиля УАЗ-31512

Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля.

Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

1. Назначение и типы

Крутящий момент Мк (рис. 1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила РТ , которая направлена в сторону движения и является движущей силой автомобиля. Тяговая сила РТ вызывает возникновение на ведущем мосту толкающей силы РХ которая от моста через подвеску передается на кузов и приводит в движение автомобиль.

В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомобиль является соответственно переднеприводным, заднеприводным и полноприводным.

Вам будет интересно - Реферат: Трансмиссия и привод передних колёс

Переднеприводные и заднеприводные автомобили имеют ограниченную проходимость и предназначены для эксплуатации на дорогах с твердым покрытием, на сухих грунтовых дорогах. Такие автомобили имеют колесную формулу, т.е. соотношение между общим числом колес и числом ведущих колес, с обозначением 4 х 2. В этой формуле первая цифра представляет собой общее число колес автомобиля, а вторая — число ведущих колес. Если ведущие колеса двухскатные (грузовые автомобили, автобусы) и, следовательно, общее их число равно шести, то колесная формула этих автомобилей имеет также обозначение 4x2.

Рис. 1. Движущие силы автомобиля

Полноприводные двухосные автомобили и трехосные автомобили с двумя задними ведущими мостами обладают повышенной проходимостью. Они способны двигаться по плохим дорогами и вне дорог. Их колесные формулы имеют соответственно обозначения 4 х 4 и 6 х 4.

Полноприводные трехосные и четырехосные автомобили имеют высокую проходимость. Они могут преодолевать рвы, ямы и подобные препятствия. Их колесные формулы обозначаются соответственно 6 х 6 и 8 х 8.

Похожий материал - Курсовая работа: Трансмиссия и ходовая ГАЗ-3102

Колесная формула характеризует не только проходимость автомобиля, но и тип его трансмиссии.

На автомобилях применяются трансмиссии различных типов (рис. 2).

Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение.

К-во Просмотров: 182

Бесплатно скачать Реферат: Трансмиссия автомобилей

cwetochki.ru

Реферат - Трансмиссия автомобилей - Транспорт

Министерство образования Российской Федерации

Санкт-Петербургский государственный университет

сервиса и экономики

Реферат

Тема: «Трансмиссия автомобилей»

Выполнил

студент 3-ого курса

Специальность 100.101

Иванов В.И.

Санкт-Петербург

2010

Содержание

Введение

1. Назначение и типы

2. Механические ступенчатые трансмиссии

3. Механическая бесступенчатая трансмиссия

4. Гидрообъемная трансмиссия

5. Электрическая трансмиссия

6. Гидромеханическая трансмиссия

7. Трансмиссии автопоездов

Список использованной литературы

Введение

Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля.

Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

1. Назначение и типы

Крутящий момент Мк (рис. 1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила РТ, которая направлена в сторону движения и является движущей силой автомобиля. Тяговая сила РТ вызывает возникновение на ведущем мосту толкающей силы РХ которая от моста через подвеску передается на кузов и приводит в движение автомобиль.

В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомобиль является соответственно переднеприводным, заднеприводным и полноприводным.

Переднеприводные и заднеприводные автомобили имеют ограниченную проходимость и предназначены для эксплуатации на дорогах с твердым покрытием, на сухих грунтовых дорогах. Такие автомобили имеют колесную формулу, т.е. соотношение между общим числом колес и числом ведущих колес, с обозначением 4 х 2. В этой формуле первая цифра представляет собой общее число колес автомобиля, а вторая — число ведущих колес. Если ведущие колеса двухскатные (грузовые автомобили, автобусы) и, следовательно, общее их число равно шести, то колесная формула этих автомобилей имеет также обозначение 4x2.

Рис. 1. Движущие силы автомобиля

Полноприводные двухосные автомобили и трехосные автомобили с двумя задними ведущими мостами обладают повышенной проходимостью. Они способны двигаться по плохим дорогами и вне дорог. Их колесные формулы имеют соответственно обозначения 4 х 4 и 6 х 4.

Полноприводные трехосные и четырехосные автомобили имеют высокую проходимость. Они могут преодолевать рвы, ямы и подобные препятствия. Их колесные формулы обозначаются соответственно 6 х 6 и 8 х 8.

Колесная формула характеризует не только проходимость автомобиля, но и тип его трансмиссии.

На автомобилях применяются трансмиссии различных типов (рис. 2).

Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение.

Рис. 2. Типы трансмиссий автомобилей

Конструкция трансмиссии зависит от типа автомобиля, его назначения и взаимного расположения двигателя и ведущих колес. Характер изменения передаваемого крутящего момента в разных типах трансмиссий различен (рис. 3).

Рис. 3. Графики изменения крутящего момента в трансмиссиях:

а — ступенчатой; 6 — бесступенчатой, в — гидромеханической; I— IV — ступени скоростей; Мк — крутящий момент; v — скорость автомобиля

Трансмиссия и ее техническое состояние оказывают значительное влияние на эксплуатационные свойства автомобиля. Так, при ухудшении технического состояния механизмов трансмиссии и нарушении регулировок в сцеплении, главной передаче и дифференциале повышается сопротивление движению автомобиля и ухудшаются тягово-скоростные свойства, проходимость, топливная экономичность и экологичность автомобиля.

2. Механические ступенчатые трансмиссии

В механических ступенчатых трансмиссиях передаваемый от двигателя к ведущим колесам крутящий момент изменяется ступенчато в соответствии с передаточным числом трансмиссии (см. рис. 3, а), которое равно произведению передаточных чисел шестеренных (зубчатых) механизмов трансмиссии. Передаточным числом шестеренного механизма называется отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни.

На автомобиле с колесной формулой 4x2, передним расположением двигателя и задними ведущими колесами (рис. 4, а) в трансмиссию входят сцепление 2, коробка передач 3, карданная передача 4, главная передача 6, дифференциал 7 и полуоси 8. Крутящий момент от двигателя 1 через сцепление 2 передается к коробке передач 3, где изменяется в соответствии с включенной передачей. От коробки передач крутящий момент через карданную передачу 4 подводится к главной передаче 6 ведущего моста 5, в которой увеличивается, и далее через дифференциал 7 и полуоси 8 — к задним ведущим колесам.

Для легковых автомобилей такое взаимное расположение двигателя и механизмов трансмиссии обеспечивает равномерное распределение нагрузки между передними и задними колесами и возможность размещения сидений между ними в зоне меньших колебаний кузова. Недостатком является необходимость применения сравнительно длинной карданной передачи с промежуточной опорой.

Рис.4. Схемы механических трансмиссий автомобилей с различными колесными формулами:

а –в — 4x2; г — 4x4; д — 6x4; е — 6x6; ж — 8x8; 1 — двигатель; 2 — сцепление; 3 — коробка передач; 4 — карданная передача; 5 — ведущий мост; 6 — главная передача; 7 — дифференциал; 8 — полуоси; 9 – карданный шарнир;10 — раздаточная коробка; 11 — межосевой дифференциал

Механические трансмиссии легковых автомобилей с колесной формулой 4x2 могут иметь и другое расположение двигателя, сцепления и коробки передач у ведущего моста — задние ведущие колеса и двигатель 1 сзади (рис. 4, б) или передние ведущие колеса и двигатель спереди (рис. 4, в). Такие трансмиссии не имеют карданной передачи между коробкой передач и ведущим мостом и включают в себя сцепление 2, коробку передач 3, главную передачу, дифференциал и привод ведущих колес, который осуществляется не полуосями, а карданными передачами. При этом в приводе к ведущим управляемым колесам применяются карданные шарниры 9 равных угловых скоростей.

Эти трансмиссии просты по конструкции, компактны, имеют небольшую массу и экономичны.

Заднее расположение двигателя и трансмиссии (см. рис. 4, б) обеспечивает лучшие обзорность и размещение сидений в кузове между мостами автомобиля, лучшую изоляцию салона от шума двигателя и отработавших газов. Однако ухудшаются управляемость, Устойчивость автомобиля и безопасность водителя и переднего пассажира при наездах и столкновениях.

Переднее расположение двигателя и трансмиссии (см. рис. 4, в) улучшает управляемость и устойчивость автомобиля, но при движении на скользких подъемах дороги возможно пробуксовывание ведущих колес вследствие уменьшения на них нагрузки.

Механическая трансмиссия автомобиля с колесной формулой 4 х 4 с передним расположением двигателя / (рис. 4, г) кроме сцепления 2, коробки передач 3, карданной передачи 4 и заднего ведущего моста 5 дополнительно включает в себя передний ведущий управляемый мост и раздаточную коробку 10, соединенную с этим мостом и коробкой передач 3 карданными передачами. Крутящий момент от раздаточной коробки подводится к переднему и заднему ведущим мостам. В раздаточной коробке имеется устройство для включения привода переднего ведущего моста или межосевой дифференциал, распределяющий крутящий момент между ведущими мостами автомобиля.

Передний ведущий мост имеет главную передачу, дифференциал и привод колес в виде карданных передач с шарнирами 9 равных угловых скоростей, обеспечивающих подведение крутящего момента к передним ведущим управляемым колесам.

У автомобилей с колесной формулой 6x4 (рис. 4, д) крутящий момент к среднему (промежуточному) и заднему ведущим мостам может подводиться одним общим валом. В этом случае главная передача среднего моста имеет проходной ведущий вал.

У автомобиля с колесной формулой 6x6 (рис. 4, е) крутящий момент к среднему и заднему ведущим мостам может подводиться и раздельно — двумя валами. В раздаточной коробке этих автомобилей имеется специальное устройство для включения привода переднего моста или межосевой дифференциал 11, распределяющий крутящий момент между ведущими мостами.

Автомобили с колесной формулой 8x8 обычно имеют потележечное расположение ведущих мостов, при котором сближены ведущие мосты — первый со вторым и третий с четвертым. При этом первые два моста являются и управляемыми.

При установке двух двигателей 1 (рис. 4, ж) трансмиссия таких автомобилей имеет два сцепления 2, две коробки передач 3 и две раздаточные коробки 10 с межосевыми дифференциалами 11. При этом автомобиль может двигаться при одном работающем двигателе.

По сравнению с другими типами трансмиссий механические трансмиссии проще по конструкции, имеют меньшую массу, более экономичны, надежнее в работе и имеют высокий КПД, равный 0,8… 0,95. Недостатком их является разрыв потока мощности при переключении передач, что снижает тягово-скоростные свойства и ухудшает проходимость автомобиля. Кроме того, правильность выбора передачи и момента переключения передач зависит от квалификации водителя, а частые переключения передач в условиях города приводят к сильной утомляемости водителя. Механические трансмиссии также не обеспечивают полного использования мощности двигателя и простоты управления автомобилем.

3. Механическая бесступенчатая трансмиссия

Это фрикционная трансмиссия, в которой для плавной передачи крутящего момента от двигателя к ведущим колесам используется сила трения.

На рис. 5 приведена схема клиноременной передачи, которая представляет собой фрикционную бесступенчатую передачу.

Крутящий момент от двигателя через сцепление передается конической шестерне 14 реверс-редуктора. Эта шестерня находится в зацеплении с шестернями 13 и 10, соединяемыми с валом 12 муфтой 11, перемещающейся на шлицах вала.

На концах вала 12 установлены ведущие шкивы 9 передачи, от которых крутящий момент через зубчатые ремни 8 трапецеидального сечения передается на ведомые шкивы 7 и далее через колесные редукторы 5 на ведущие колеса автомобиля.

Передаточное число клиновой передачи, равное отношению рабочих радиусов R 2 : R 1 шкивов, зависит от положения ремня 8. Оно регулируется пружиной 6, соответственно сдвигающей половины ведомого шкива 7, и пружиной 3, раздвигающей половины ведущего шкива 9, в зависимости от частоты вращения коленчатого вала двигателя и вакуума в полости 2, соединенной трубопроводом / с впускным коллектором двигателя.

При трогании автомобиля с места пружины 3 и 6 обеспечивают наибольшее передаточное число, и в этом случае половины ведомого шкива сдвинуты, а ведущего — раздвинуты.

Рис. 5. Схема клиноременной передачи:

1 — трубопровод; 2 — полость; 3, 6 — пружины; 4 — груз; 5 — редуктор; 7, 9 – шкивы; 8 — ремень; 10, 13, 14 — шестерни; 11 — муфта; 12 — вал; R 1 R 2 – радиусы шкивов

При разгоне автомобиля действующие силы от грузов 4 центробежного регулятора и вакуума в полости 2 преодолевают силу пружин 3 и 6, сдвигают половины ведущего шкива 9 и раздвигают половины ведомого шкива 7. Таким образом, осуществляется бесступенчатое изменение передаточного числа и, следовательно, крутящего момента.

Эта передача выполняет также функции межколесного дифференциала. Передача применяется на некоторых моделях легковых автомобилей.

Механические бесступенчатые передачи не получили широкого распространения и имеют ограниченное применение на автомобилях из-за недостаточной надежности их работы.

4. Гидрообъемная трансмиссия

Этот вид трансмиссии представляет собой бесступенчатую передачу автомобиля.

В гидрообъемной трансмиссии (верхняя половина рис. 6) двигатель 1 внутреннего сгорания приводит в действие гидронасос 2, соединенный трубопроводами с гидромоторами 3, валы которых связаны с ведущими колесами автомобиля. При работе двигателя гидродинамический напор жидкости, создаваемый гидронасосом в гидромоторах ведущих колес, преобразуется в механическую работу. Ведущие колеса с гидромоторами, установленными в них, называются гидромотор-колесами.

Рабочее давление в системе в зависимости от конструкции гидроагрегатов — 10...50 МПа.

На рис. 7 представлена простейшая схема устройства и работы гидрообъемной передачи, в которой используется гидростатический напор жидкости. При вращении коленчатого вала двигателя через кривошип 2 и шатун 3 производится перемещение поршня 4 гидронасоса. Жидкость из гидронасоса через трубопровод 9 подается в цилиндр гидродвигателя, поршень 8 которого перемещает через шатун 7 кривошип 5 и приводит во вращение ведущее колесо 6.

Рис. 6. Схема гидрообъемной (верхняя половила схемы) и электрической (нижняя половина) трансмиссии:

1 — двигатель; 2 — гидронасос; 3 — гидромотор; 4 — электродвигатель; 5 — генератор

Преимуществом гидрообъемной трансмиссии является бесступенчатое автоматическое изменение ее передаточного числа и передаваемого крутящего момента, что обеспечивает плавное трогание автомобиля с места, облегчает и упрощает управление автомобилем и снижает утомляемость водителя и, следовательно, повышает безопасность движения. Она также повышает проходимость автомобиля в результате непрерывного потока мощности и плавного изменения крутящего момента.

В действительности гидрообъемные передачи, применяемые на автомобилях, гораздо сложнее, чем представленная на рис. 7. Так, они включают роторные гидронасосы плунжерного типа, колесные гидродвигатели, магистрали высокого и низкого давления, редукционные клапаны, охладитель, дренажную и подпитывающую системы (резервуар, фильтр, охладитель, насос, редукционный и предохранительный клапаны).

Рис. 7. Схема гидрообъемной передачи:

1 — двигатель; 2, 5 — кривошипы; 3, 7 — шатуны; 4, 8 — поршни; 6 — колесо; 9 — трубопровод

По сравнению с механической гидрообъемная трансмиссия имеет большие габаритные размеры и массу, меньшие КПД, долговечность и более высокую стоимость. Она сложна в изготовлении и требует надежных уплотнений.

5. Электрическая трансмиссия

Это бесступенчатая передача, в которой крутящий момент измеряется плавно, без участия водителя, в зависимости от сопротивления дороги и частоты вращения коленчатого вала двигателя.

В электрической трансмиссии (см. нижнюю половину рис. 6) двигатель 1 внутреннего сгорания приводит в действие генератор 5. Ток от генератора поступает к электродвигателям 4 ведущих колес автомобиля.

Ведущее колесо (рис. 8) с установленным внутри электродвигателем 1 называется электромотор-колесом. Крутящий момент от электродвигателя к колесу передается через колесный редуктор 2. При применении быстроходных электродвигателей в ведущих колесах используются понижающие зубчатые передачи.

Преимуществом электрических трансмиссий является бесступенчатое автоматическое изменение ее передаточного числа. Это обеспечивает плавное трогание автомобиля с места, упрощает и облегчает управление автомобилем и снижает утомляемость водителя, в результате повышается безопасность движения. Кроме того, повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. Повышается также долговечность двигателя из-за уменьшения динамических нагрузок и отсутствия жесткой связи между двигателем и ведущими колесами. Однако у электрических трансмиссий КПД не превышает 0,75, что ухудшает тягово-скоростные свойства автомобиля. Кроме того, расход топлива по сравнению с механическими трансмиссиями повышается на 10...20 %. Электрические трансмиссии также имеют большую массу и высокую стоимость.

Рис. 8. Электромотор-колесо:

1 — электродвигатель; 2 — редуктор

6. Гидромеханическая трансмиссия

Это комбинированная трансмиссия, которая состоит из механизмов механической и гидравлической трансмиссий. В гидромеханической трансмиссии передаточное число и крутящий момент изменяются ступенчато и плавно (см. рис. 3, в).

В гидромеханическую трансмиссию (рис. 9) входят гидромеханическая коробка передач 2, включающая гидротрансформатор и механическую коробку передач, карданная передача 3, главная передача 4, дифференциал 5 и полуоси 6.

Гидротрансформатор устанавливают вместо сцепления, и в нем передача крутящего момента от двигателя 1 к трансмиссии происходит за счет гидродинамического (скоростного) напора жидкости. Гидротрансформатор плавно автоматически изменяет крутящий момент в зависимости от нагрузки. При этом крутящий момент от гидротрансформатора передается к механической коробке передач, в которой передачи включаются с помощью фрикционных механизмов. Применение гидротрансформатора обеспечивает плавное трогание автомобиля с места, уменьшает число переключений передач, что снижает утомляемость водителя, улучшает проходимость автомобиля, почти в два раза повышается долговечность двигателя и механизмов трансмиссии вследствие уменьшения в трансмиссии динамических нагрузок и крутильных колебаний. Снижается также вероятность остановки двигателя при резком увеличении нагрузки.

Рис. 9. Схема гидромеханической трансмиссии:

1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуоси

Недостатком гидромеханической трансмиссии являются более низкий КПД, что ухудшает тягово-скоростные свойства и топливную экономичность автомобиля, более сложная конструкция и большая масса, а также высокая стоимость в производстве, которая составляет около 10 % стоимости автомобиля.

Электромеханическая трансмиссия. Это комбинированная трансмиссия, которая состоит из элементов механической и электрической трансмиссий.

На рис. 10 показана схема электромеханической трансмиссии автобуса большой вместимости. Двигатель 4 внутреннего сгорания расположен в задней части автобуса и приводит в действие генератор 5. Ток, вырабатываемый генератором, подводится к электродвигателю 1. Крутящий момент от электродвигателя через карданную передачу 2 подводится к ведущему мосту 3 и далее через главную передачу, дифференциал и полуоси к ведущим колесам автобуса. Сцепление и коробка передач в трансмиссии отсутствуют, так как при возрастании сопротивления дороги уменьшается частота вращения электродвигателя и автоматически увеличивается крутящий момент, подводимый к ведущим колесам автобуса.

Режим работы двигателя в различных дорожных условиях зависит только от подачи топлива, которая осуществляется педалью. Отсутствие педали сцепления и рычагов переключения коробки передач существенно облегчает работу водителя автобуса, который в условиях города работает с частыми остановками. Кроме того, электромеханическая трансмиссия повышает проходимость и безопасность движения. Недостатками электромеханической трансмиссии по сравнению с механической являются меньший КПД, не превышающий 0,85, что ухудшает тягово-скоростные свойства и топливную экономичность (расход топлива увеличивается на 15… 20 %), а также большие габаритные размеры и масса.

Рис. 10. Схема электромеханической трансмиссии:

1 – электродвигатель; 2 — карданная передача; 3 — ведущий мост; 4 — двигатель; 5 — генератор

7. Трансмиссии автопоездов

Автопоезда, состоящие из автомобиля-тягача и прицепов или полуприцепов, могут иметь различного типа трансмиссии в зависимости от назначения автопоезда. Так, на автопоездах, предназначенных для работы по дорогам с твердым покрытием, трансмиссию имеет только автомобиль-тягач. На автопоездах, рассчитанных на работу в условиях бездорожья, для повышения их проходимости прицепы и полуприцепы обычно оборудуются ведущими мостами. Мощность и крутящий момент к этим мостам могут подводиться от двигателя автомобиля-тягача через механическую, гидравлическую или электрическую передачи.

Для привода дополнительного оборудования автопоезда (лебедки, насоса подъема грузового кузова и др.) в трансмиссии имеется коробка отбора мощности, которая присоединяется к коробке передач.

Список использованной литературы

1. Сарбаев В.И. Техническое обслуживание и ремонт автомобилей. − Ростов н/Д: «Феникс», 2004.

2. Вахламов В.К. Техника автомобильного транспорта. − М.: «Академия», 2004.

3. Барашков И.В. Бригадная организация технического обслуживания и ремонта автомобилей. – М.: Транспорт, 1988г.

www.ronl.ru

Реферат: Реферат: Трансмиссия автомобилей

Министерство образования Российской Федерации

Санкт-Петербургский государственный университет

сервиса и экономики

Реферат

Тема: «Трансмиссия автомобилей»

 

Выполнил

студент 3-ого курса

Специальность 100.101

Иванов В.И.

Санкт-Петербург

2010

Содержание

 

Введение

1. Назначение и типы

2. Механические ступенчатые трансмиссии

3. Механическая бесступенчатая трансмиссия

4. Гидрообъемная трансмиссия

5. Электрическая трансмиссия

6. Гидромеханическая трансмиссия

7. Трансмиссии автопоездов

Список использованной литературы

Введение

 

Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля.

Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

1. Назначение и типы

Крутящий момент Мк(рис. 1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила РТ, которая направлена в сторону движения и является движущей силой автомобиля. Тяговая сила РТ  вызывает возникновение на ведущем мосту толкающей силы РХ  которая от моста через подвеску передается на кузов и приводит в движение автомобиль.

В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомобиль является соответственно переднеприводным, заднеприводным и полноприводным.

Переднеприводные и заднеприводные автомобили имеют ограниченную проходимость и предназначены для эксплуатации на дорогах с твердым покрытием, на сухих грунтовых дорогах. Такие автомобили имеют колесную формулу, т.е. соотношение между общим числом колес и числом ведущих колес, с обозначением 4 х 2. В этой формуле первая цифра представляет собой общее число колес автомобиля, а вторая — число ведущих колес. Если ведущие колеса двухскатные (грузовые автомобили, автобусы) и, следовательно, общее их число равно шести, то колесная формула этих автомобилей имеет также обозначение 4x2.

Рис. 1. Движущие силы автомобиля

Полноприводные двухосные автомобили и трехосные автомобили с двумя задними ведущими мостами обладают повышенной проходимостью. Они способны двигаться по плохим дорогами и вне дорог. Их колесные формулы имеют соответственно обозначения 4 х 4 и 6 х 4.

Полноприводные трехосные и четырехосные автомобили имеют высокую проходимость. Они могут преодолевать рвы, ямы и подобные препятствия. Их колесные формулы обозначаются соответственно 6 х 6 и 8 х 8.

Колесная формула характеризует не только проходимость автомобиля, но и тип его трансмиссии.

На автомобилях применяются трансмиссии различных типов (рис. 2).

Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение.

Рис. 2. Типы трансмиссий автомобилей

Конструкция трансмиссии зависит от типа автомобиля, его назначения и взаимного расположения двигателя и ведущих колес. Характер изменения передаваемого крутящего момента в разных типах трансмиссий различен (рис. 3).

Рис. 3. Графики изменения крутящего момента в трансмиссиях:

а — ступенчатой; 6 — бесступенчатой, в — гидромеханической; I— IV — ступени скоростей; Мк — крутящий момент; v — скорость автомобиля

Трансмиссия и ее техническое состояние оказывают значительное влияние на эксплуатационные свойства автомобиля. Так, при ухудшении технического состояния механизмов трансмиссии и нарушении регулировок в сцеплении, главной передаче и дифференциале повышается сопротивление движению автомобиля и ухудшаются тягово-скоростные свойства, проходимость, топливная экономичность и экологичность автомобиля.

 

2. Механические ступенчатые трансмиссии

 

В механических ступенчатых трансмиссиях передаваемый от двигателя к ведущим колесам крутящий момент изменяется ступенчато в соответствии с передаточным числом трансмиссии (см. рис. 3, а), которое равно произведению передаточных чисел шестеренных (зубчатых) механизмов трансмиссии. Передаточным числом шестеренного механизма называется отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни.

На автомобиле с колесной формулой 4x2, передним расположением двигателя и задними ведущими колесами (рис. 4, а) в трансмиссию входят сцепление 2, коробка передач 3, карданная передача 4, главная передача 6, дифференциал 7 и полуоси 8. Крутящий момент от двигателя 1 через сцепление 2 передается к коробке передач 3, где изменяется в соответствии с включенной передачей. От коробки передач крутящий момент через карданную передачу 4 подводится к главной передаче 6 ведущего моста 5, в которой увеличивается, и далее через дифференциал 7 и полуоси 8 — к задним ведущим колесам.

Для легковых автомобилей такое взаимное расположение двигателя и механизмов трансмиссии обеспечивает равномерное распределение нагрузки между передними и задними колесами и возможность размещения сидений между ними в зоне меньших колебаний кузова. Недостатком является необходимость применения сравнительно длинной карданной передачи с промежуточной опорой.

     

Рис.4. Схемы механических трансмиссий автомобилей с различными колесными формулами:

а –в — 4x2; г — 4x4; д — 6x4; е — 6x6; ж — 8x8; 1 — двигатель; 2 —сцепление; 3 — коробка передач; 4 — карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 – карданный шарнир;10 — раздаточная коробка;  11 — межосевой дифференциал

Механические трансмиссии легковых автомобилей с колесной формулой 4x2 могут иметь и другое расположение двигателя, сцепления и коробки передач у ведущего моста — задние ведущие колеса и двигатель 1 сзади (рис. 4, б) или передние ведущие колеса и двигатель спереди (рис. 4, в). Такие трансмиссии не имеют карданной передачи между коробкой передач и ведущим мостом и включают в себя сцепление 2, коробку передач 3, главную передачу, дифференциал и привод ведущих колес, который осуществляется не полуосями, а карданными передачами. При этом в приводе к ведущим управляемым колесам применяются карданные шарниры 9 равных угловых скоростей.

Эти трансмиссии просты по конструкции, компактны, имеют небольшую массу и экономичны.

Заднее расположение двигателя и трансмиссии (см. рис. 4, б) обеспечивает лучшие обзорность и размещение сидений в кузове между мостами автомобиля, лучшую изоляцию салона от шума двигателя и отработавших газов. Однако ухудшаются управляемость, Устойчивость автомобиля и безопасность водителя и переднего пассажира при наездах и столкновениях.

Переднее расположение двигателя и трансмиссии (см. рис. 4, в) улучшает управляемость и устойчивость автомобиля, но при движении на скользких подъемах дороги возможно пробуксовывание ведущих колес вследствие уменьшения на них нагрузки.

Механическая трансмиссия автомобиля с колесной формулой 4 х 4 с передним расположением двигателя / (рис. 4, г) кроме сцепления 2, коробки передач 3, карданной передачи 4 и заднего ведущего моста 5 дополнительно включает в себя передний ведущий управляемый мост и раздаточную коробку 10, соединенную с этим мостом и коробкой передач 3 карданными передачами. Крутящий момент от раздаточной коробки подводится к переднему и заднему ведущим мостам. В раздаточной коробке имеется устройство для включения привода переднего ведущего моста или межосевой дифференциал, распределяющий крутящий момент между ведущими мостами автомобиля.

Передний ведущий мост имеет главную передачу, дифференциал и привод колес в виде карданных передач с шарнирами 9 равных угловых скоростей, обеспечивающих подведение крутящего момента к передним ведущим управляемым колесам.

У автомобилей с колесной формулой 6x4 (рис. 4, д) крутящий момент к среднему (промежуточному) и заднему ведущим мостам может подводиться одним общим валом. В этом случае главная передача среднего моста имеет проходной ведущий вал.

У автомобиля с колесной формулой 6x6 (рис. 4, е) крутящий момент к среднему и заднему ведущим мостам может подводиться и раздельно — двумя валами. В раздаточной коробке этих автомобилей имеется специальное устройство для включения привода переднего моста или межосевой дифференциал 11, распределяющий крутящий момент между ведущими мостами.

Автомобили с колесной формулой 8x8 обычно имеют потележечное расположение ведущих мостов, при котором сближены ведущие мосты — первый со вторым и третий с четвертым. При этом первые два моста являются и управляемыми.

При установке двух двигателей 1 (рис. 4, ж) трансмиссия таких автомобилей имеет два сцепления 2, две коробки передач 3 и две раздаточные коробки 10 с межосевыми дифференциалами 11. При этом автомобиль может двигаться при одном работающем двигателе.

По сравнению с другими типами трансмиссий механические трансмиссии проще по конструкции, имеют меньшую массу, более экономичны, надежнее в работе и имеют высокий КПД, равный 0,8... 0,95. Недостатком их является разрыв потока мощности при переключении передач, что снижает тягово-скоростные свойства и ухудшает проходимость автомобиля. Кроме того, правильность выбора передачи и момента переключения передач зависит от квалификации водителя, а частые переключения передач в условиях города приводят к сильной утомляемости водителя. Механические трансмиссии также не обеспечивают полного использования мощности двигателя и простоты управления автомобилем.

 

3. Механическая бесступенчатая трансмиссия

 

Это фрикционная трансмиссия, в которой для плавной передачи крутящего момента от двигателя к ведущим колесам используется сила трения.

На рис. 5 приведена схема клиноременной передачи, которая представляет собой фрикционную бесступенчатую передачу.

Крутящий момент от двигателя через сцепление передается конической шестерне 14 реверс-редуктора. Эта шестерня находится в зацеплении с шестернями 13 и 10, соединяемыми с валом 12 муфтой 11, перемещающейся на шлицах вала.

На концах вала 12 установлены ведущие шкивы 9 передачи, от которых крутящий момент через зубчатые ремни 8 трапецеидального сечения передается на ведомые шкивы 7 и далее через колесные редукторы 5 на ведущие колеса автомобиля.

Передаточное число клиновой передачи, равное отношению рабочих радиусов R2:R1 шкивов, зависит от положения ремня 8. Оно регулируется пружиной 6, соответственно сдвигающей половины ведомого шкива 7, и пружиной 3, раздвигающей половины ведущего шкива 9, в зависимости от частоты вращения коленчатого вала двигателя и вакуума в полости 2, соединенной трубопроводом / с впускным коллектором двигателя.

При трогании автомобиля с места пружины 3 и 6 обеспечивают наибольшее передаточное число, и в этом случае половины ведомого шкива сдвинуты, а ведущего — раздвинуты.

Рис. 5. Схема клиноременной передачи:

1 — трубопровод; 2 — полость; 3, 6 — пружины; 4 — груз; 5 — редуктор; 7, 9 – шкивы; 8 — ремень; 10, 13, 14 — шестерни; 11 — муфта; 12 — вал; R1 R2 – радиусы шкивов

При разгоне автомобиля действующие силы от грузов 4 центробежного регулятора и вакуума в полости 2 преодолевают силу пружин 3 и 6, сдвигают половины ведущего шкива 9 и раздвигают половины ведомого шкива 7. Таким образом, осуществляется бесступенчатое изменение передаточного числа и, следовательно, крутящего момента.

Эта передача выполняет также функции межколесного дифференциала. Передача применяется на некоторых моделях легковых автомобилей.

Механические бесступенчатые передачи не получили широкого распространения и имеют ограниченное применение на автомобилях из-за недостаточной надежности их работы.

4. Гидрообъемная трансмиссия

 

Этот вид трансмиссии представляет собой бесступенчатую передачу автомобиля.

В гидрообъемной трансмиссии (верхняя половина рис. 6) двигатель 1 внутреннего сгорания приводит в действие гидронасос 2, соединенный трубопроводами с гидромоторами 3, валы которых связаны с ведущими колесами автомобиля. При работе двигателя гидродинамический напор жидкости, создаваемый гидронасосом в гидромоторах ведущих колес, преобразуется в механическую работу. Ведущие колеса с гидромоторами, установленными в них, называются гидромотор-колесами.

Рабочее давление в системе в зависимости от конструкции гидроагрегатов — 10...50 МПа.

На рис. 7 представлена простейшая схема устройства и работы гидрообъемной передачи, в которой используется гидростатический напор жидкости. При вращении коленчатого вала двигателя через кривошип 2 и шатун 3 производится перемещение поршня 4 гидронасоса. Жидкость из гидронасоса через трубопровод 9 подается в цилиндр гидродвигателя, поршень 8 которого перемещает через шатун 7 кривошип 5 и приводит во вращение ведущее колесо 6.

Рис. 6. Схема гидрообъемной (верхняя половила схемы) и электрической (нижняя половина) трансмиссии:

1 — двигатель; 2 — гидронасос; 3 — гидромотор; 4 — электродвигатель; 5 — генератор

Преимуществом гидрообъемной трансмиссии является бесступенчатое автоматическое изменение ее передаточного числа и передаваемого крутящего момента, что обеспечивает плавное трогание автомобиля с места, облегчает и упрощает управление автомобилем и снижает утомляемость водителя и, следовательно, повышает безопасность движения. Она также повышает проходимость автомобиля в результате непрерывного потока мощности и плавного изменения крутящего момента.

В действительности гидрообъемные передачи, применяемые на автомобилях, гораздо сложнее, чем представленная на рис. 7. Так, они включают роторные гидронасосы плунжерного типа, колесные гидродвигатели, магистрали высокого и низкого давления, редукционные клапаны, охладитель, дренажную и подпитывающую системы (резервуар, фильтр, охладитель, насос, редукционный и предохранительный клапаны).

Рис. 7. Схема гидрообъемной передачи:

1 — двигатель; 2, 5 — кривошипы; 3, 7 — шатуны; 4, 8 — поршни; 6 —колесо; 9 — трубопровод

По сравнению с механической гидрообъемная трансмиссия имеет большие габаритные размеры и массу, меньшие КПД, долговечность и более высокую стоимость. Она сложна в изготовлении и требует надежных уплотнений.

 

5. Электрическая трансмиссия

 

Это бесступенчатая передача, в которой крутящий момент измеряется плавно, без участия водителя, в зависимости от сопротивления дороги и частоты вращения коленчатого вала двигателя.

В электрической трансмиссии (см. нижнюю половину рис. 6) двигатель 1 внутреннего сгорания приводит в действие генератор 5. Ток от генератора поступает к электродвигателям 4 ведущих колес автомобиля.

Ведущее колесо (рис. 8) с установленным внутри электродвигателем 1 называется электромотор-колесом. Крутящий момент от электродвигателя к колесу передается через колесный редуктор 2. При применении быстроходных электродвигателей в ведущих колесах используются понижающие зубчатые передачи.

Преимуществом электрических трансмиссий является бесступенчатое автоматическое изменение ее передаточного числа. Это обеспечивает плавное трогание автомобиля с места, упрощает и облегчает управление автомобилем и снижает утомляемость водителя, в результате повышается безопасность движения. Кроме того, повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. Повышается также долговечность двигателя из-за уменьшения динамических нагрузок и отсутствия жесткой связи между двигателем и ведущими колесами. Однако у электрических трансмиссий КПД не превышает 0,75, что ухудшает тягово-скоростные свойства автомобиля. Кроме того, расход топлива по сравнению с механическими трансмиссиями повышается на 10...20 %. Электрические трансмиссии также имеют большую массу и высокую стоимость.

Рис. 8. Электромотор-колесо:

1 — электродвигатель; 2 — редуктор

6. Гидромеханическая трансмиссия

 

Это комбинированная трансмиссия, которая состоит из механизмов механической и гидравлической трансмиссий. В гидромеханической трансмиссии передаточное число и крутящий момент изменяются ступенчато и плавно (см. рис. 3, в).

В гидромеханическую трансмиссию (рис. 9) входят гидромеханическая коробка передач 2, включающая гидротрансформатор и механическую коробку передач, карданная передача 3, главная передача 4, дифференциал 5 и полуоси 6.

Гидротрансформатор устанавливают вместо сцепления, и в нем передача крутящего момента от двигателя 1 к трансмиссии происходит за счет гидродинамического (скоростного) напора жидкости. Гидротрансформатор плавно автоматически изменяет крутящий момент в зависимости от нагрузки. При этом крутящий момент от гидротрансформатора передается к механической коробке передач, в которой передачи включаются с помощью фрикционных механизмов. Применение гидротрансформатора обеспечивает плавное трогание автомобиля с места, уменьшает число переключений передач, что снижает утомляемость водителя, улучшает проходимость автомобиля, почти в два раза повышается долговечность двигателя и механизмов трансмиссии вследствие уменьшения в трансмиссии динамических нагрузок и крутильных колебаний. Снижается также вероятность остановки двигателя при резком увеличении нагрузки.

Рис. 9. Схема гидромеханической трансмиссии:

1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуоси

Недостатком гидромеханической трансмиссии являются более низкий КПД, что ухудшает тягово-скоростные свойства и топливную экономичность автомобиля, более сложная конструкция и большая масса, а также высокая стоимость в производстве, которая составляет около 10 % стоимости автомобиля.

Электромеханическая трансмиссия. Это комбинированная трансмиссия, которая состоит из элементов механической и электрической трансмиссий.

На рис. 10 показана схема электромеханической трансмиссии автобуса большой вместимости. Двигатель 4 внутреннего сгорания расположен в задней части автобуса и приводит в действие генератор 5. Ток, вырабатываемый генератором, подводится к электродвигателю 1. Крутящий момент от электродвигателя через карданную передачу 2 подводится к ведущему мосту 3 и далее через главную передачу, дифференциал и полуоси к ведущим колесам автобуса. Сцепление и коробка передач в трансмиссии отсутствуют, так как при возрастании сопротивления дороги уменьшается частота вращения электродвигателя и автоматически увеличивается крутящий момент, подводимый к ведущим колесам автобуса.

Режим работы двигателя в различных дорожных условиях зависит только от подачи топлива, которая осуществляется педалью. Отсутствие педали сцепления и рычагов переключения коробки передач существенно облегчает работу водителя автобуса, который в условиях города работает с частыми остановками. Кроме того, электромеханическая трансмиссия повышает проходимость и безопасность движения. Недостатками электромеханической трансмиссии по сравнению с механической являются меньший КПД, не превышающий 0,85, что ухудшает тягово-скоростные свойства и топливную экономичность (расход топлива увеличивается на 15... 20 %), а также большие габаритные размеры и масса.

Рис. 10. Схема электромеханической трансмиссии:

1 – электродвигатель; 2 — карданная передача; 3 — ведущий мост; 4 — двигатель; 5 — генератор

7. Трансмиссии автопоездов

 

Автопоезда, состоящие из автомобиля-тягача и прицепов или полуприцепов, могут иметь различного типа трансмиссии в зависимости от назначения автопоезда. Так, на автопоездах, предназначенных для работы по дорогам с твердым покрытием, трансмиссию имеет только автомобиль-тягач. На автопоездах, рассчитанных на работу в условиях бездорожья, для повышения их проходимости прицепы и полуприцепы обычно оборудуются ведущими мостами. Мощность и крутящий момент к этим мостам могут подводиться от двигателя автомобиля-тягача через механическую, гидравлическую или электрическую передачи.

Для привода дополнительного оборудования автопоезда (лебедки, насоса подъема грузового кузова и др.) в трансмиссии имеется коробка отбора мощности, которая присоединяется к коробке передач.

www.neuch.ru

Реферат - Автоматические коробки передач легковых автомобилей

Автоматические коробки передач легковых автомобилей

Автоматическая коробка передач.

Улучшение эксплуатационных качеств современного автомобиля привело к значительному усложнению его конструкции. А оснащение автомобилей автоматической трансмиссией позволило резко снизить объем нагрузки, возлагаемой на водителя во время движения, что также благоприятно отразилось на ходовой части, двигателе и скоростных качествах автомобиля. Надежность и простота эксплуатации определили дальнейшее широкое использование этого изобретения. В настоящее время автоматические трансмиссии применяются и на легковых, и на полноприводных автомобилях, и даже на грузовом транспорте. При использовании транспортного средства с ручным управлением, для поддержания необходимой скорости, водителю необходимо часто пользоваться рычагом переключения передач.

По этой причине он обязан постоянно следить за нагрузкой двигателя и скоростью автомобиля. Применение автоматической трансмиссии исключает необходимость постоянного пользования переключающим рычагом. Изменение скорости выполняется автоматически, в зависимости от нагрузки двигателя, скорости перемещения транспортного средства и желаний водителя. Поэтому, по сравнению с ручной коробкой передач, автоматическая трансмиссия имеет следующие неоспоримые преимущества:

  • увеличивает комфортность вождения автомобиля за счет освобождения водителя от контрольных функций;
  • автоматически и плавно производит переключения, согласовывая нагрузку двигателя, скорость его движения, степень нажатия на педаль газа;
  • предохраняет двигатель и ходовую часть автомобиля от перегрузок;
  • допускает и ручное, и автоматическое переключение скоростей.

Все разнообразие автоматических трансмиссий, применяемых сегодня, условно можно разделить на два типа. Основное различие этих типов заключается в системах управления и контроля за использованием трансмиссии. Для первого типа характерно то, что функции управления и контроля выполняются специальным гидравлическим устройством. А во втором типе функции управления и контроля выполняет электронное устройство. Составные части же и узлы автоматических трансмиссий обоих типов практически одинаковы. Существуют некоторые различия в компоновке и устройстве автоматической трансмиссии переднеприводного и заднеприводного автомобиля. Автоматическая трансмиссия для переднеприводных автомобилей более компактна и имеет внутри своего корпуса отделение главной передачи — дифференциал. Несмотря на эти отличия, основные функции и принцип действия всех автоматов одинаковы. Для того чтобы обеспечить движение, а также для выполнения других своих функций, автоматическая трансмиссия должна быть оснащена следующими узлами: механизмом выбора режима движения, гидротрансформатором, коробкой передач, узлом управления и контроля.

Упрощённая кинематическая схема АКПП

Упрощённая кинематическая схема АКПП

АКПП состоит из:

  1. Гидротрансформатор (ГТ) – соответствует сцеплению в механической трансмиссии, но не требует непосредственного управления со стороны водителя.
  2. Планетарный ряд — соответствует блоку шестерен в механической коробке передач и служит для изменения передаточного отношения в автоматической трансмиссии при переключении передач.
  3. Тормозная лента, передний фрикцион, задний фрикцион – компоненты, посредством которых осуществляется переключение передач.
  4. Устройство управления. Этот узел состоит из маслосборника (поддон коробки передач), шестеренчатого насоса и клапанной коробки. Клапанная коробка представляет собой систему каналов с расположенными в них клапанами и плунжерами, которые выполняют функции контроля и управления. Это устройство преобразует скорость движения автомобиля, нагрузку двигателя и степень нажатия на педаль газа в гидравлические сигналы. На основе этих сигналов, за счет последовательного включения и выхода из рабочего состояния фрикционных блоков, автоматически изменяются передаточные отношения в коробке передач.

Гидротрансформатор (или torque converter в зарубежных источниках) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки передач. Он установлен в промежуточном кожухе, между двигателем и коробкой передач и выполняет функции обычного сцепления. В процессе работы этот узел, наполненный трансмиссионной жидкостью, несет довольно высокие нагрузки и вращается с достаточно большой скоростью. Он не только передает крутящий момент, поглощает и сглаживает вибрации двигателя, но и приводит в действие масляный насос, находящийся в корпусе коробки передач. Масляный насос наполняет трансмиссионной жидкостью гидротрансформатор и создает рабочее давление в системе управления и контроля. Поэтому является неверным мнение о том, что автомобиль, оснащенный автоматической трансмиссией, можно завести принудительно, не используя стартер, а разогнав его до высокой скорости. Шестеренчатый насос получает энергию только от двигателя, и если двигатель не работает, то давление в системе управления и контроля не создается, в каком бы положении не находился рычаг выбора режима движения. Следовательно, принудительное вращение карданного вала не обязывает коробку передач работать, а двигатель — вращаться.

Гидротрансформатор.

Планетарный ряд. В отличие от простой механической трансмиссии, в которой используются параллельные валы и сцепляющиеся между собой шестерни, в автоматических трансмиссиях в подавляющем большинстве используются планетарные передачи.

Планетарный ряд.

Составные части фрикциона. Поршень (piston) приводится в действие давлением масла. Двигаясь под давлением масла вправо (по рисунку), поршень посредством конического диска (dished plate) плотно прижимает ведущие диски пакета к ведомым, заставляя их вращаться как единое целое и осуществляя передачу крутящего момента от барабана к втулке. В корпусе самой коробки передач расположены несколько планетарных механизмов, они и обеспечивают необходимые передаточные отношения. А передача крутящего момента от двигателя через планетарные механизмы к колесам происходит с помощью фрикционных дисков, дифференциала и других сервисных устройств. Управление всеми этими устройствами осуществляется благодаря трансмиссионной жидкости через систему управления и контроля.

Составные части фрикциона.

Тормозная лента. Устройство, используемое для блокировки элементов планетарного ряда.

Тормозная лента.

Работа трансмиссии. Режимы pаботы.

Р — парковка. В этом положении включен трансмиссионный тормоз, удерживающий машину во время стоянки. Двигатель работает на холостом ходу. Этого тормоза достаточно на ровном месте. В ином случае сначала затяните ручной тормоз и затем включите трансмиссионнный — Р. В этом положении рычага можно запускать двигатель.

R — задний ход. Это положение следующее по ходу рычага. Его можно включать только при полной остановке автомобиля, иначе поломки не избежать.

N — нейтраль. Здесь все понятно: вращение от двигателя не передается к ведущим колесам и незаторможенная машина может свободно катиться. В данном положении, как и положении Р, возможен пуск двигателя. Во время движения автомобиля включать нейтраль не рекомендуется. Но если это все же произошло, необходимо сбросить газ и только после того, как упадут обороты, включите нужную передачу.

D — движение. Положение для езды. В этом случае обеспечивается оптимальный режим работы двигателя и движения автомобиля в нормальных условиях. В автоматическом режиме последовательно включаются все передачи (обычно их четыре). Автомобиль начинает движение со второй передачи- это обусловлено работой гидротрансформатора. Первую передачу при необходимости включает только «кик-даун». Торможение двигателем в данном положении рычага достаточно эффективно.

S (либо цифра 3) — диапазон пониженных передач. В это положение рекомендуется переводить рычаг на дороге с небольшими подъемами и спусками. Высшая передача в данном случае — третья. Первую передачу можно включить с помощью «кик-даун». В положении S торможение двигателем еще более эффективно, чем в положении D.

L (либо цифра 2) — второй диапазон пониженных передач. Используется для езды в тяжелых условиях, например, в горах. В этом положении включается только первая (для трогания с места) и вторая передачи. Торможение двигателем еще эффективнее, чем в положении S. Если при наборе скорости передвинуть рычаг в положение S, а затем обратно в L, то вторая передача включается раньше.

Следует отметить, что рычаг селектора автоматической коробки передач можно переводить из положения D в S и даже в L (соответственно 3 или 2) во время движения, например, при обгоне. Но так как в этот момент включится понижающая передача, есть опасность «перекрутить» двигатель. Чтобы этого не произошло, по меткам на шкале спидометра контролируйте предельную скорость на данной передаче, или следите за оборотами двигателя по тахометру, если таковой имеется. В некоторых моделях автомобилей автоматическая коробка передач имеет специальный режим W (winter-зима).

Разгон. Момент переключения передач в автоматической коробке зависит от скорости автомобиля, нагрузки на двигатель, от того, плавно или резко вы нажимаете на акселератор и, конечно же, от положения рычага селектора (он имеет такое название, поскольку предназначен для выбора режима работы коробки). Во время движения, если вы прибавляете «газ» понемногу, плавно надавливая на акселератор, каждая следующая (т.е. высшая) передача будет включаться, как только обороты двигателя станут достаточными для перехода на нее, и разгон автомобиля при этом происходит плавно. Если же вы нажимаете на педаль резко, то передачи станут переключаться несколько позднее, а разгон будет интенсивнее. На автоматических коробках передач последних годов выпуска имеются переключатели режима разгона: N-нормальный (либо Е — экономичный) и S — спортивный.

Кик-даун. Это устройство принудительно включает низшую передачу и позволяет достичь наибольшего ускорения. Принцип работы: резко нажимаете на педаль газа до упора, затем резко отпускаете- включается низшая передача и при дальнейшем нажатии на педаль автомобиль разгоняется с максимальным ускорением. Когда нужная скорость будет достигнута, сбрасывается газ — опять включается высшая передача, например, четвертая после третьей. При кратковременной остановке достаточно отпустить педаль акселератора и затормозить автомобиль ножным тормозом. Рычаг селектора при этом остается в положении для движения (D,S,L). Но обязательно удерживайте машину на месте, нажав на педаль тормоза, иначе автомобиль может тронуться, особенно если обороты холостого хода повышенные (например, в холодное время года). Такая особенность автоматической трансмиссии: даже на холостом ходу не исключается полностью передача крутящегося момента к ведущим колесам. При более продолжительной остановке с выключенным двигателем переведите рычаг на положение N. Остановившись на подъеме, удерживайте машину ножным тормозом. Маневрируя в ограниченном пространстве, контролируйте движение слегка отпуская педаль тормоза.

Буксиpовка. Hеисправный автомобиль можно буксировать, только установив рычаг в положение N со скоростью не более 50 км/час на расстояние не свыше 100 км. Если потребуется перевезти машину на большее расстояние, придется демонтировать карданный вал или «вывесить» ведущие колеса.

www.ronl.ru