Большая Энциклопедия Нефти и Газа. Гидравлическая трансмиссия


Гидравлическая трансмиссия

Изобретение относится к машиностроению, а именно к гидравлическим передачам, включающим гидронасосы и гидродвигатели объемного вытеснения. Гидравлическая трансмиссия содержит гидронасос, в двухсекционном корпусе которого находятся приводной вал с двумя расположенными через 180° зубьями и связанный с ним через шестеренную передачу ведомый вал с двумя шиберами. Один из зубьев и соответствующий шибер находятся в передней секции корпуса, а другой из зубьев и соответствующий шибер - в задней секции. Нагнетательная полость передней секции соединена каналом с всасывающей полостью задней секции. Достигается повышение КПД устройства. 4 ил.

 

Изобретение относится к машиностроению, а именно к гидравлическим передачам, включающим гидронасосы и гидродвигатели объемного вытеснения, и может быть использовано в трансмиссии транспортных средств.

Известен насос (см. Кожевников С.Н. и др. Элементы механизмов. Государственное издательство оборонной промышленности, 1956, с.801, фиг.2575). В его корпусе находятся приводной вал, выполненный заодно с расположенными через 180° двумя зубьями, и ведомый вал, выполненный в виде шибера с двумя впадинами для зубьев. При вращении приводного вала происходит следующее: один зуб движется в охватывающем приводной вал корпусе и создает поток рабочего тела из нагнетательной полости, а другой зуб в это время соответственно движется в впадине шибера ведомого вала и обеспечивает границу между нагнетательной и всасывающей полостями.

Первым недостатком известного насоса является то, что он не сможет достичь рабочего давления в гидравлической трансмиссии из-за сложности обеспечения надежного уплотнения между зубьями и впадинами шибера.

Вторым недостатком является наличие колебания величины потока рабочего тела, обусловленные пульсирующим выдавливанием в нагнетательную полость рабочего тела зубьями из впадин.

Техническая задача устройства состоит в том, чтобы исключить необходимость уплотнения между зубьями и впадинами и исключить выдавливание зубьями рабочего тела из впадин в нагнетательную полость.

Поставленная задача выполняется за счет того, что гидравлическая трансмиссия содержит гидронасос, в корпусе которого расположены приводной и ведомый валы с выполненными заодно зацепленными между собой одинаковыми шестернями. Вместе с тем, приводной вал выполнен заодно с расположенными через 180° двумя зубьями, а ведомый вал выполнен в виде шиберов с впадинами для зубьев. Корпус разделен выполненной заодно с приводным валом перегородкой в виде круга с диаметром окружности вершин зубьев на переднюю и заднюю секции, при этом один из зубьев и соответствующий шибер расположены в передней секции, а другой из зубьев и соответствующий шибер расположены в задней секции. Всасывающая полость в передней секции соединена с входным отверстием, нагнетательная полость соединена через огибающий корпус канал с всасывающей полостью в задней секции, и нагнетательная полость в задней секции соединена с выходным отверстием.

В предлагаемом устройстве нагнетательная полость будет иметь надежное уплотнение, к тому же в нее не будет выдавливаться рабочее тело из впадин шиберов, потому что она не будет сообщаться с зазором между зубьями и впадинами.

Сущность изобретения поясняется чертежами, где на фиг.1-4 изображена схема создания в насосе потока рабочего тела: на фиг.1 - в передней секции; на фиг.2 - при переходе из передней секции в заднюю; на фиг.3 - в задней секции; на фиг.4 - при переходе из задней секции в переднюю.

Гидравлическая трансмиссия содержит насос, в корпусе 1 которого расположены приводной вал 2 и ведомый вал 3 с выполненными заодно зацепленными между собой одинаковыми шестернями соответственно 4 и 5. Вместе с тем, приводной вал выполнен с двумя расположенными через 180° зубьями, а ведомый вал выполнен в виде шиберов с впадинами для зубьев. Корпус разделен выполненной заодно с приводным валом перегородкой в виде круга с диаметром окружности вершин зубьев на переднюю секцию 1п и заднюю секцию 1з. При этом один из зубьев и соответствующий шибер расположены в передней секции, а другой из зубьев и соответствующий шибер расположены в задней секции. Всасывающая полость в передней секции соединена с входным отверстием «Вх», нагнетательная полость соединена через огибающий корпус канал «Кан» с всасывающей полостью в задней секции, а нагнетательная полость в задней секции соединена с выходным отверстием «Вых».

Работа устройства

При вращении приводного вала 2 происходит следующее (см. фиг.1). Когда зуб приводного вала в передней секции 1п движется по нижней половине круговой траектории, а в задней секции 1з соответственно - по верхней половине круговой траектории, то рабочее тело в передней секции всасывается из входного отверстия «Вх» в образованную сзади хода зуба полость. Из образованной спереди хода зуба полости рабочее тело нагнетается через канал «Кан» и затем в задней секции через пространство между зубом и корпусом, а также через зазор между зубом и впадиной шибера ведомого вала 3 в выходное отверстие «Вых».

Когда оба зуба проходят через горизонтальное положение(см. фиг.2), то рабочее тело всасывается из входного отверстия в переднюю секцию и одновременно нагнетается из последовательно соединенных образованных спереди хода зубьев в передней и задней секциях полостей в выходное отверстие.

Когда зуб в передней секции движется по верхней половине круговой траектории (см. фиг.3), а в задней секции соответственно по нижней половине траектории, то рабочее тело свободно всасывается из входного отверстия через переднюю секцию в заднюю секцию, и затем нагнетается из задней секции в выходное отверстие.

Когда зубья проходят через горизонтальное положение (см. фиг.4), то рабочее тело начинает нагнетаться из передней секции и продолжает нагнетаться из задней секции.

Технико-экономическая эффективность данного предложения заключается в том, что предлагаемая гидравлическая трансмиссия будет иметь высокое рабочее давление, благодаря повышению надежности уплотнения нагнетательных полостей, будет иметь большой коэффициент полезного действия, благодаря отсутствию выдавливания в нагнетательные полости рабочего тела из впадин шиберов при вхождении в них зубьев, и будет иметь равномерный поток рабочего тела, благодаря последовательному соединению нагнетательных полостей.

Гидравлическая трансмиссия, содержащая гидронасос, в корпусе которого расположены приводной и ведомый валы с выполненными заодно зацепленными между собой одинаковыми шестернями, причем приводной вал выполнен заодно также с расположенными через 180° двумя зубьями, а ведомый вал выполнен в виде шиберов со впадинами для зубьев, отличающаяся тем, что корпус разделен выполненной заодно с приводным валом перегородкой в виде круга с диаметром окружности вершин зубьев на переднюю и заднюю секции, и один из зубьев и соответствующий шибер расположены в передней секции, а другой из зубьев и соответствующий шибер расположены в задней секции, при этом в передней секции всасывающая полость соединена с входным отверстием, нагнетательная полость соединена через огибающий корпус канал с всасывающей полостью в задней секции, а нагнетательная полость в задней секции соединена с выходным отверстием.

www.findpatent.ru

Гидравлическая трансмиссия

 

Трансмиссия предназначена для использования в машиностроении. Содержит масляный нагнетатель, реверсивный распределитель масляного давления, два гидродвигателя со своими кинематиками. Гидродвигатели включают блоки цилиндров с установленными в них встречно движущимися поршнями, распределитель и вал с закрепленными на нем фланцево-эксцентриковыми преобразователями. Блоки цилиндров состоят из двух дисковых стоек, соединенных между собой с внутренней стороны трубой. Имеют цилиндрические направляющие, на которых непосредственно установлены цилиндры. Распределитель выполнен автоматическим и установлен в центре вала. На валу с одной стороны стоек установлены подшипниковые стаканы с фланцами, на которых закреплены полумуфты. С другой стороны стоек закреплены кожухи, в которых установлены фланцево-эксцентриковые преобразователи. Дополнительные кожухи с обеих сторон имеют вторые полумуфты. Кожухи снабжены страховочными упорами, на которых также закреплены полумуфты для взаимодействия с полумуфтами фланцево-эксцентрикового преобразователя. Муфты не дают кожуху вращаться, но и не мешают совершать возвратно-поступательное движение. Увеличивается моторесурс, снижается стоимость механизма. 7 ил.

Изобретение относится к области машиностроения, а именно к гидродвигателям, работающим совместно с кинематикой.

Известна гидравлическая трансмиссия, включающая масляный нагнетатель, реверсивный распределитель масляного давления, два гидродвигателя, каждый гидродвигатель имеет свою кинематику с внутренней или наружной зубчатой передачей на обычное колесное устройство, тормозной привод, работающий от пружин с растормаживателем, гидродвигатели включают цилиндры, встречно движущиеся беспальцевые поршни, шаровой шатун, в центре гидродвигателя установлен вал и на нем закреплены под углом два фланцево-эксцентриковые преобразователи движения на вращение, кожух имеет накладки и подшипники, установлен на вращающихся эксцентриках фланца (SU 1375895 A1, 23.02.1988). Недостатком известного устройства является низкий моторесурс, а также высокая стоимость. Технической задачей, поставленной в настоящем изобретении, является увеличение моторесурса, а также снижение стоимости механизма. Эта задача достигается тем, что в гидротрансмиссии цилиндры имеют кругло-секторное устройство их крепления, состоящее из двух дисковых стоек, с внутренней стороны соединенных между собой трубой или обоймой, имеющими цилиндровые постели, в которых уложены цилиндры, закрепленные крышками, в центре гидродвигателя на середине длины вала установлен автоматический роторный распределитель давления для отвода и подвода масла, с внешней стороны к стойкам прикреплены страховочные упоры, к стойкам и упорам прикреплены съемные подшипниковые стаканы, на подшипниковый стакан крепится половина муфты, а на кожух фланца крепится ее вторая половина, муфты не дают кожуху вращаться, но и не мешают кожуху совершать возвратно-поступательное движение. На фиг. 1 показана схема гидравлической трансмиссии; на фиг. 2 - реверсивный регулятор давления и отвода масла; на фиг. 3 - то же, вид сбоку; на фиг. 4 - гидродвигатель, продольный разрез; на фиг. 5 - поршневое шарово-шатунное устройство гидродвигателя; на фиг. 6 - разрез А-А фиг. 4; на фиг. 7 - ротор гидродвигателя. Гидравлическая трансмиссия содержит масляный нагнетатель 1, реверсивный распределитель масляного давления 2, два гидродвигателя 3 и 4 с соответствующей кинематикой 5 и 6 с внутренней или наружной зубчатой передачей на обычное колесное устройство 7 и 8 соответственно. Тормозной привод 9, работающий от пружин с растормаживателем 10. Гидродвигатели 3 и 4 включают цилиндры 11, встречно движущиеся беспальцевые поршни 12, шаровой шатун 13. В центре гидродвигателей установлен вал 14 и на нем закреплены под углом 45o два фланцево-эксцентриковые преобразователи движения на вращение 15 и 16. На вращающихся эксцентриках 17, 18 фланцев 18 установлены кожухи 19, 20. Кожухи имеют накладки и подшипники. Цилиндры 11 имеют кругло-секторное устройство их крепления, состоящее из двух дисковых стоек 21, с внутренней стороны соединенных между собой трубой или обоймой 22, имеющими цилиндровые постели 23, в которые укладываются эти цилиндры 11 и закрепляются крышками 24. С внешней стороны к стойкам 21 крепятся съемные подшипниковые стаканы 25. Фланец 26 подшипникового стакана является зубчатой шестерней. На другой фланец 27 крепятся пальцы с шаровыми втулками 28. На кожух 20 крепится зубчатая 29. На другой кожух 19 крепится шайба 30 с вертикальными окнами. С внешней стороны к стойкам крепятся съемные страховочные упоры 31 кожуха. На подшипниковые стаканы крепятся половинки муфты, которыми являются зубчатые шайбы 29, 30. На кожухах 19, 20 фланцев укреплены вторые половинки муфты, которыми являются шайбы 30. Муфты не дают кожуху вращаться, но дают возможность совершать возвратно-поступательное движение. В центре гидродвигателя на середине длины вала 14 установлен автоматический роторный распределитель 32 давления для отвода и подвода масла. Распределитель давления 2 имеет канал 33 и окна 34. Ротор 35 распределителя 2 имеет две емкости 36 и 37. Распределитель давления 2 также содержит корпус 38, в котором выполнены окна 39 и 40, соединенные трубопроводами 41, 42 и штуцерами 43, 44 с роторным распределителем 32 гидродвигателей 3 и 4. Корпус 38 содержит также окна 45 и 46. Роторный распределитель 32 имеет срез 47 и окна 48. Для исключения потерь давления масла роторная заслонка 49 должна иметь размер перепускного окна - 48 (чем меньше размер эксцентриков - 17, тем больше потери мощности). Гидротрансмиссия работает следующим образом. При подаче давления масляным нагнетателем 1 на реверсивный гидрораспределитель 2 масляного давления по каналу 33 через одно из окон 34 масло попадает в емкость 37 ротора 35. Далее через другое окно 34 ротора и окно 39 корпуса 38 по трубопроводу 41 и штуцер 43 попадает в роторный распределитель 32 двигателей и по срезу 47 ротора окна 48 - в цилиндры 11. Одновременный выпуск отработанного масла из цилиндров 11 другим срезом ротора происходит через штуцер 44, трубопровод 42, окно в корпусе 40, одно из окон ротора 35, емкость 36, другое окно ротора, окно в корпусе 46 слива масла в картер нагнетателя.

Формула изобретения

Гидравлическая трансмиссия, включающая масляный нагнетатель, реверсивный распределитель масляного давления, два гидродвигателя, каждый гидродвигатель имеет свою кинематику с внутренней или наружной зубчатой передачей на обычное колесное устройство, тормозной привод, работающий от пружин с растормаживателем, гидродвигатели включают цилиндры, встречно движущиеся беспальцевые поршни, шаровой шатун, в центре гидродвигателя установлен вал и на нем закреплены под углом два фланцево-эксцентриковых преобразователя движения на вращение, кожух имеет накладки и подшипники, установлен на вращающихся эксцентриках фланца, отличающаяся тем, что цилиндры имеют кругло-секторное устройство их крепления, состоящее из двух дисковых стоек, с внутренней стороны соединенных между собой трубой или обоймой, имеющими цилиндровые постели, в которых уложены цилиндры, закрепленные крышками, в центре гидродвигателя на середине длины вала установлен автоматический роторный распределитель давления для отвода и подвода масла, с внешней стороны к стойкам прикреплены страховочные упоры, к стойкам и упорам прикреплены съемные подшипниковые стаканы, на подшипниковый стакан крепится половина муфты, а на кожух фланца крепится ее вторая половина, муфты не дают кожуху вращаться, но и не мешают кожуху совершать возвратно-поступательное движение.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7

Похожие патенты:

Изобретение относится к объемным гидроприводам, в частности к регулированию скорости рабочих органов строительных, дорожных и других машин

Изобретение относится к области автомобилестроения, машиностроения и может быть использовано в трансмиссиях как переднеприводных, так и заднеприводных легковых автомобилей, а также других транспортных средств

Изобретение относится к машиностроению и может быть использовано в любой отрасли техники для передачи крутящих моментов с регулируемой частотой вращения

Изобретение относится к машиностроению, в частности к бесступенчатым гидростатическим трансмиссиям

Изобретение относится к области машиностроения и может применяться в гидроприводах, в частности, горных тракторов

Изобретение относится к области машиностроения и может быть использовано в тех устройствах, где требуется передавать крутящий момент от двигателя к исполнительным механизмам, например в трансмиссиях самоходных машин

Изобретение относится к области машиностроения, в частности к объемным гидропередачам, и может быть использовано в трансмиссиях различных машин вместо механической или гидромеханической коробки передач

Изобретение относится к области машиностроения, в частности к объемным гидропередачам, и может быть использовано в трансмиссиях различных машин вместо механической или гидромеханической коробки передач

Изобретение относится к области гидромашиностроения

Изобретение относится к машиностроению и может быть использовано для привода наземных насосов

Изобретение относится к транспортному машиностроению

Изобретение относится к машиностроению и предназначено для использования в системах управления транспортных средств, дорожно-строительной технике, в авиа- и ракетостроении, судостроении и т.д

Изобретение относится к системам передачи энергии от двигателя

Изобретение относится к объемным гидравлическим передачам вращательного движения

Изобретение относится к области гидромашиностроения, более конкретно - к регулируемым гидравлическим передачам объемного типа, устанавливаемым в механизмах поворота трансмиссии гусеничных машин

Изобретение относится к транспортному машиностроению и может быть использовано в системе трансмиссии транспортных средств, преимущественно гусеничных машин

Изобретение относится к транспортному машиностроению и предназначено для применения на транспортных средствах, в частности гусеничных машинах

Изобретение относится к области машиностроения, а именно к гидродвигателям, работающим совместно с кинематикой

www.findpatent.ru

Гидравлические силовые передачи

Строительные машины и оборудование, справочник

Категория:

   Общие сведения

Гидравлические силовые передачи

Назначение, классификация, индексация, основные параметры и технические характеристики

Гидравлическая силовая передача состоит из гидравлического насоса (гидронасоса), устройств, передающих энергию рабочей жидкости, и гидравлических моторов (гидромоторов).

Гидравлический насос преобразует механическую энергию в энергию потока рабочей жидкости, идущую на питание гидравлических двигателей. Энергия потока рабочей жидкости передается от гидронасоса к гидродвигателю с помощью различных устройств для подвода рабочей жидкости (гидравлические баки, подвижные вращающиеся соединения, трубопроводы, различная соединительная арматура).

Гидромотор преобразует энергию потока рабочей жидкости в механическую энергию, приводящую в действие тот или иной рабочий механизм крана.

Гидравлические силовые передачи обеспечивают жесткую (в пределах несжимаемости жидкости) связь между гидронасосом и гидродвигателем через рабочую жидкость, перемещающуюся по системе трубопроводов.

На подъемно-транспортных и строительных машинах применяют три типа гидравлических машин: гидронасосы, гидромоторы и гидроцилиндры.

Гидронасосы характеризуются объемной подачей, давлением, полезной мощностью и полным кпд. Объемная подача — это объем жидкости, подаваемой насосом в единицу времени. Давлением насоса называется приращение механической энергии, полученное каждой единицей массы жидкости, проходящей через насос, т.е. разность удельных энергий жидкости при выходе из насоса и при входе в него. Полезная мощность насоса – мощность, сообщаемая насосом подаваемой рабочей жидкости и определяемая произведением давления насоса и его подачи. Отношение полезной мощности к мощности, потребляемой насосом, называют коэффициентом полезного действия (кпд) насоса. Эта величина характеризует все потери в насосе, складывающиеся из объемных и гидромеханических потерь. Каждая из этих потерь характеризуется соответствующими кпд. Объемный кпд учитывает внутренние перетечки жидкости из полости нагнетания в полость всасывания и наружные утечки из корпуса через зазоры. Механический кпд учитывает потери, возникающие при вращении и взаимном перемещении деталей насоса, гидравлический кпд – потери давления, возникающие при движении по внутренним каналам насоса. Полный кпд насоса равен произведению объемного, гидравлического и механического кпд.

Применяют гидропередачи с нерегулируемыми насосами (постоянной подачи). Скорость в таких передачах регулируют комбинированным способом: с одной стороны, изменением частоты вращения приводящего двигателя (двигатель базового автомобиля) и, следовательно, гидронасоса, а с другой стороны, путем прямого регулирования подачи с помощью регулирующих гидроаппаратов. Существует два типа нерегулируемых гидравлических насосов: преимущественно шестеренные и аксиально-поршневые; первые наиболее перспективные и часто используемые.

Шестеренный насос (рис. 15) имеет две шестерни 6 и 9, входящие в зацепление друг с другом, заключенные в корпусе 7. Ведущая шестерня 9 закреплена на ведущем валу на шпонке, а ведомая 6 получает от нее вращение. Так как зацепление шестерен 6 и 9 внешнее, то и сам насос называется шестеренным насосом с внешним зацеплением. Всасывающая гидролиния подведена к шестерням с той стороны, где зубья выходят из зацепления, а напорная — со стороны, где зубья входят в зацепление. Головки зубьев, входя в зацепление, выжимают масло из впадин между зубьями, создавая давление в напорной гидролинии гидросистемы. Жидкость от всасывающей гидролинии перемещается к напорной гидролинии в полостях, образованных впадинами зубьев и стенкой корпуса насоса.

Рис. 15. Шестеренные насосы НШ-10Е-3-Л (а), НШ-50-3-Л (б) и схема зацепления их шестерен (в):1, 17 – крышки; 2 — манжета крышки; 3 – кольцо уплотнительное; 4 – пластина; 5, 11, 18 – манжеты; 6, 14 – шестерни ведомые; 7 – корпус; 8 – подшипники;9, 13 – шестерни ведущие; 10 — втулка левая; 12 — компенсатор; 15 — втулка правая; 16 – корпус; 19 – кольцо опорное; 20 – кольцо ограничительное; А — линия всасывания; Б – линия нагнетания.

Движение жидкости в шестеренном насосе показано на рис.15,в стрелками. Конструктивно шестерни 6 и 9 выполнены заодно с валами, образуя вал-шестерни. Вал-шестерни размещаются в алюминиевом корпусе 7, закрытом крышкой 1. На хвостовике ведущей вал-шестерни сделаны шлицы для соединения насоса с двигателем или валом трансмиссии. Для уменьшения торцевых утечек вал-шестерни устанавливают в корпусе на специальных плавающих втулках 10, 15, положение которых друг относительно друга фиксируется лысками и проволокой. Плавающие втулки прижимаются к шестерням вал-шестерн за счет давления рабочей жидкости, подаваемой к их торцам в полостях. По мере износа торцов шестерен и втулок зазор между ними, а следовательно, и торцевые утечки остаются минимальными (так называемая гидравлическая компенсация торцевых зазоров). Чтобы уменьшить радиальные утечки, -стремятся сделать минимальный зазор между шестернями и корпусом насоса. Резиновые кольца и манжетные уплотнения 5,11,18 предотвращают утечку жидкости из корпуса насоса. Жидкость, просачивающаяся по валам шестерен, поступает через каналы в полости, соединенные с камерой всасывания (на рисунке не показано). Все это позволяет увеличить объемный кпд насоса и значительно удлинить срок его службы. По простоте конструкции и стоимости изготовления шестеренные насосы обладают несомненными преимуществами по сравнению с насосами других типов, поэтому их применяют в тех гидропередачах, где кпд не имеет существенного значения.

Аксиально-поршневые насосы (рис.16) компактны, имеют высокий кпд, при высоких давлениях, малоинерционны, обладают большой энергоемкостью на единицу массы (в некоторых высокооборотных конструкциях до 12 кВт/кг). Рассмотрим принципиальную схему аксиально-поршневого насоса. Пусть на диске 6 (рис.16,а), установленном на валу 7, шарниром 5 закреплен шток 4 цилиндра, поршень которого связан шарниром 3 со штоком. Провернем вал 7 и цилиндр на 180° так, чтобы гильза цилиндра 1 из положения 1 переместилась в положение 2. Если продольные оси вала 7 и цилиндра пересекаются под углом, то поршень, переместившись вправо, через канал Д засосет в полость Б рабочую жидкость. Повернем вал 7 еще раз на 180° так, чтобы гильза из положения 2 переместилась в положение 1. Тогда поршень переместится влево и через канал Д вытеснит из полости Б рабочую жидкость. Если на диске 6 (рис. 16,6) закрепить штоки не одного, а нескольких цилиндров, а гильзы цилиндров выполнить в одном блоке 9, то будет получена конструктивная схема насоса. При вращении диска каждый из цилиндров будет последовательно всасывать через полость В, а затем нагнетать рабочую жидкость в полость Г. Полости В и Г выполнены в виде дуговых окон в крышке 8.

Рис. 16. Схема аксиально-поршневого насоса:а — схема действия поршня; б — конструктивная схема; 1 — цилиндр; 2 – поршень; 3, 5 — шарниры; 4 — шток; 6 — диск; 7 — вал; 8 — крышка с пазом; 9 — блок цилиндров.

Рис. 17. Аксиально-поршневой насос с наклонным блоком (а) и обозначение на схемах насоса с постоянным направлением потока (б) и нерегулируемого гидромотора с реверсивным потоком (в):1 — вал; 2 — манжета; 3, 9, 16 – кольца; 4, 5 – подшипники; 6 – блок цилиндров; 7 — шатун; 8 – болт; 10 — крышка; 11 – распределитель; 12 – поршень; 13 — щток; 14, 15 — корпус; 17 – стопорное кольцо.

В гидроприводах применяют такие аксиально-поршневые нерегулируемые насосы с наклонным блоком (рис.17). Вал, установленный на подшипник в корпусе, шарнирно соединен с шатунами, которые в свою очередь, шарнирно соединены с поршнями. Поршни размещающийся в блоке цилиндров, ось которого наклонна оси вала. Распределитель со сферической стороны имеет два полукольцевых паза, соединенных с круглыми отверстиями, выходящими на плоскую сторону распределителя и совпадающими с отверстиями в крышке. При вращении вала шатуны с поршнями вращают блок цилиндров, при этом поршни одновременно совершают возвратно-поступательное движение относительно блока цилиндров, а блок цилиндров вращается относительно распределителя. За один оборот вала каждый поршень совершает один двойной ход (всасывание и нагнетание рабочей жидкости). От угла наклона оси блоков цилиндра к оси приводного вала зависит длина хода поршня, а следовательно, и объемная подача насоса. Центральная ось обеспечивает соосность блока цилиндров с распределителем. Отверстия для подсоединения всасывающего и нагнетательного трубопроводов размещены в крышке, а дренажное отверстие для отвода внутренних утечек – в корпусе.

Гидромотор — гидродвигатель вращательного действия — предназначен для преобразования энергии потока рабочей жидкости в механическую энергию вращения выходного вала.

Гидромоторы имеют сходное с насосом конструктивное устройство. Отличие состоит в некоторых особенностях распределительного узла, обеспечивающего работу механизма в качестве реверсивного гидромотора. Описанные выше насосы могут работать и как гидродвигатели, т.е. обратимы без изменений. Нерегулируемый гидромотор работает по схеме (рис. 18), при которой подвод к одному из отверстий в крышке гидромотора рабочая жидкость через полукольцевой паз распределителя поступает под поршни, полости которых в данный момент соединены с этим пазом. Под действием давления рабочей жидкости поршни выдвигаются из блока цилиндров и через шатун 6 поворачивают вал. Вместе с валом поворачивается и блок цилиндров с поршнями, в результате чего в работу постоянно вступают новые поршни, в то время как поршни, совершающие относительно блока цилиндров обратный ход через другой полукольцевой паз распределителя и второе отверстие в крышке, выталкивают рабочую жидкость из гидромотора, обеспечивая непрерывное вращение вала. Частота вращения вала зависит от расхода рабочей жидкости через гидромотор: чем расход больше, тем выше частота вращения вала. При подводе рабочей жидкости к другому отверстию крышки изменяется направление вращения вала гидромотора. Внутренние утечки, как и у насоса, отводятся через дренажное отверстие в корпусе. В целях увеличения производительности применяют регулируемые гидромоторы. Особенностью регулируемого гидромотора является то, что он оборудован специальным устройством – регулятором, позволяющим в процессе работы изменять угол наклона блока цилиндров относительно оси вала, вследствие чего изменяется ход поршней, а следовательно, — и рабочий объем гидромотора. Благодаря этому частоту вращения вала гидромотора можно регулировать не только изменением расхода рабочей жидкости через гидромотор, но и изменением его рабочего объема.

Рассмотрим устройство регулируемого гидромотора (рис. 18,а). Узел регулятора включает в себя установленный в корпусе поршень с поводковым пальцем, втулку с золотником, пружины и со стержнем и крышку.

Рис. 18. Регулируемый гидромотор (а) и его обозначение на гидравлической схеме (б):1 — вал; 2 – манжета; 3, 14, 22, 24 — угоготнительные кольца; 4, 11 — крышки; 5, 18 — корпус; 6 – шатун; 7, 16 – поршни; 8 — блок; 9, 20 — винт; . 10, 21 — пробки; 12, 23 – пружины; 13 – плунжер; 15 — рычаг; 17 – палец; 19 — золотник; 25 — распределитель; 26 – шип; 27,” 28 – подшипники; 29 — обратный клапан.

Угол наклона оси блока цилиндров относительно оси вала определяется положением поршня в корпусе. Втулка с золотником образуют гидрораспределитель, управляющий поршнем. Золотник имеет гидравлическое управление через канал в крышке. Клапан с логической функцией «ИЛИ» обеспечивает подвод поступающей в гидромотор рабочей жидкости к средней канавке втулки, независимо от того, к какому из основных отверстий гидромотора рабочая жидкость подводится, т.е. независимо от направления вращения вала гидромотора. На рис. 18 гидромотор изображен в положении, соответствующем его номинальному рабочему объему. В этом случае давление в линии управления отсутствует и золотник под действием пружины находится в верхнем положении, соединяя канал со средней канавкой втулки, а полость с дренажом. Давление поступающей в гидромотор рабочей жидкости передается в полость, фиксируя положение поршня 16, изображенное на рисунке.

При подаче давления управления к каналу золотник переместится в нижнее положение, соединяя полость с дренажом, а другую полость со средней канавкой втулки. В этом случае подводимая к гидромотору рабочая жидкость поступит в полость и переместит поршень в верхнее положение, уменьшая угол наклона блока цилиндров 8 и, тем самым, рабочий объем гидромотора. Частота вращения вала гидромотора при том же расходе рабочей жидкости увеличится пропорционально уменьшению рабочего объема. Винтом ограничивается минимальный угол наклона блока цилиндров, а стержнем регулируется установочная длина пружины, определяющая минимальное давление управления. Наиболее предпочтительным считается, когда в схемах гидропривода применяются насосы и гидромоторы одного типоразмера.

Гидроцилиндры применяют: возвратно-поступательные одно- и двустороннего действия. Гидроцилиндры одностороннего действия (рис 19,а) делятся на поршневые, плунжерные, плунжерные телескопические. Шток или плунжер в них движется под действием рабочей жидкости только в одном направлении. Обратное движение выполняется под действием внешних сил или пружины. В гидроцилиндре двустороннего действия (рис. 19,6) шток и поршень движутся в обоих направлениях под действием рабочей жидкости. Эти гидроцилиндры могут быть с одно- и двусторонним штоком или телескопические. Необходимым условием работы гидроцилиндра является герметизация штока в месте его выхода из корпуса, герметизация штоковой и поршневой полостей. Для герметизации используются кольца и манжеты из резины , пластмассы и композиционных материалов. Главные параметры гидроцилиндров – внутренний диаметр гильзы цилиндра (иногда говорят просто диаметр цилиндра) и рабочее давление, определяющее эксплуатационную характеристику гидроцилиндра.

Устройства для подвода рабочей жидкости. Рабочая жидкость поступает в систему гидропривода из специального гидробака, в котором хранится запас жидкости, необходимый для обеспечения нормальной работы системы. К насосу рабочая жидкость поступает по всасывающей гидролинии, а. от насоса по напорной гидролинии через вращающееся соединение – к двигателям исполнительных механизмов.

Рис. 19. Гидроцилиндры одно- (а) и двустороннего (б) действия: 1 – поршневой; 2 — плунжерный; 3 — плунжерный телескопический; 4 — с односторонним штоком; 5 — с двусторонним штоком; 6 — телескопический

Отработавшая жидкость возвращается в бак через вращающееся соединение по сливным гидролиниям. В бак отводятся также по дренажным гидролиниям утечки жидкости, происходящие в отдельных узлах системы привода. Бак служит для помещения запас циркулирующей в гидросистеме крана рабочей жидкости, улучшения теплоотвода, очистки рабочей жидкости от мелких взвесей и предотвращения эмульгирования. В основном применяют баки открытого типа (рис. 20), в которых внутренняя полость связана с атмосферой через специальное отверстие в крышке заливной горловины (в крышке имеется фильтрующая набивка — воздушный фильтр, обеспечивающая очистку попадающего в бак воздуха). Корпус бака сварен из листового проката. Рабочая жидкость в баке должна быть на уровне 0,8 его высоты (не выше), следят за этим по маслоуказателю уровня. Отверстие всасывающей гидролинии снабжено запорным клапаном для перекрытия жидкости при ремонтах путем затяжки клапана до отказа и расположено почти у дна бака, но так, чтобы в гидросистему не засасывались осадки.

Рис. 20. Гидробак: 1 – перегородка; 2 — корпус; 3 – крышка; 4 – фильтр воздушный; 5 – фильтр заливной; 6 — прокладка; 7 — клапан запорный; 8 – вентиль; 9 – клапан; 10 — кольцо уплотнительное; 11 – уловители магнитные; 12 – смотровое стекло; 13, 14 — сливной и дренажный патрубки.

Отверстие сливной гидролинии расположено так, что оно всегда находится ниже минимального уровня рабочей жидкости. Это позволяет избежать вспенивания жидкости при работе. Между полостями слив и всасывания установлены две перегородки, которые, удлиняя путь рабочей жидкости, способствуют более полному удалению из нее взвесей и пузырьков воздуха. Кроме того, перегородки обеспечивают поступление в полость всасывания верхних более чистых слоев масла. Рабочей жидкостью бак заправляют через заливной фильтр грубой очистки. Сливают жидкость через патрубок. Для очистки рабочей жидкости от различных примесей в гидролинии устанавливают магистральные, а в баках — встроенные фильтры. Во встроенных фильтрах жидкость фильтруется так же, как в магистральных фильтрах. Обозначают и обслуживают эти фильтры одинаково. Фильтры характеризуются тонкостью фильтрации рабочей жидкости, которая оценивается по наименьшему размеру частиц, задерживаемых фильтром. Фильтры изготавливают с тонкостью фильтрации 10, 25, 40, 63, 80 и 125 мкм.

Трубопроводы применяют жесткие и эластичные. Жесткие используют для соединения узлов гидропривода, не перемещающихся друг относительно друга: для систем низкого давления (1,6-2,0 МПа) — стальные цельнотянутые трубы или трубы из полимерных материалов; высокого давления – стальные цельнотянутые трубы. Эластичные трубопроводы соединяют узлы гидропривода, перемещающиеся один относительно другого. Кроме того, их применяют вместо жестких, когда необходимо облегчить сборку (например, для компенсации неточностей при сборке в стесненных условиях) или получить быстроразъемные соединения. В качестве эластичных трубопроводов применяют резинотканевые рукава (при давлении не более 1,6 МПа) или рукава высокого давления с неразъемными или разъемными наконечниками. Рукав высокого давления состоит из трех резиновых слоев и хлопчатобумажных и металлических оплеток. Арматуру (например, тройники, штуцеры, угольники) присоединяют к жестким трубопроводам шароконусными соединениями: труба соединяется с арматурой через ниппель с помощью накидной гайки. Эластичный низконапорный трубопровод и арматуру соединяют друг с другом хомутами. К корпусу агрегата арматуру присоединяют на прямой резьбе. При прямой резьбе уплотнение между корпусом и арматурой выполняют или резиновым кольцом, или медной прокладкой.

Базовые автомобили, силовое оборудование и трансмиссии

Базой автомобильных кранов, автовышек и автогидроподъемников, автокомпрессоров являются шасси серийно выпускаемых грузовых автомобилей. Поэтому под базовым автомобилем имеется в виду грузовой автомобиль, шасси которого используют в качестве ходового устройства (базы) подъемно-транспортных и строительных машин. В зависимости от допустимых нагрузок автомобильных шасси определяется и грузоподъемность этих машин. Для автопогрузчиков и автогрейдеров используются не полностью в сборе автомобильные шасси, а основные их составные части и сборочные единицы (двигатели, мосты, трансмиссии, органы управления), образующие базовое ходовое устройство машин.

Различие исполнений подъемно-транспортных и строительных машин вызывает особенности установки их на базовые автомобильные шасси. Конструкции опорных рам, устройств блокировки подвески и стабилизаторов, выносных опор и других сборочных единиц неповоротной части формируются в зависимости от типа шасси.

Силовое оборудование является источником энергии и представляет собой систему устройств, преобразующих тот или иной вид энергии в механическую. В качестве силового оборудования привода подъемно-транспортных и строительных машин используют двигатели внутреннего сгорания базовых автомобилей, преобразующие работу расширения газообразных продуктов сгорания топлива в механическую энергию. Подробные знания о двигателях внутреннего сгорания получают при изучении предмета «Устройство и техническое обслуживание автомобилей».

Трансмиссиями называются элементы механических силовых передач от двигателя к исполнительным (рабочим) механизмам, образующие кинематические цепи и механизмы. В подъемно-транспортных и строительных машинах трансмиссии размечают на элементы механических силовых передач, расположенные в ходовой части и установленные на поворотной или верхней рамах опорной базы. Трансмиссия ходовой части служит для передачи полученной от двигателя внутреннего сгорания механической энергии силовым передачам передвижения машины (трансмиссии базовых автомобилей) и устройствам, которые приводят в действие рабочие механизмы на поворотной или опорной рамах (трансмиссия привода). Подробные знания о трансмиссиях базовых автомобилей получают при изучении предмета «Устройство и техническое обслуживание автомобилей». В механическом приводе машин трансмиссия представляет собой единую механическую силовую передачу, состоящую из отдельных механических передач, коробок, редукторов, механизмов, соединительных муфт и валов, обеспечивающих постоянное и надежное соединение сборочных единиц (узлов) и деталей силовой передачи между собой. В электрическом приводе машин трансмиссия является совокупностью трех последовательных силовых передач: механической, передающей механическую энергию от двигателя базового автомобиля к генератору; электрической, передающей энергию электрического тока от генератора электрическим двигателям; механической, передающей механическую энергию от электродвигателя к рабочему органу. Отличительными признаками гидравлического привода является наличие вместо электрического генератора и электродвигателей в силовых передачах соответственно гидронасоса и гидромоторов. Передача крутящего момента двигателя базового автомобиля механизмам машины (при механическом приводе), генераторам и гидронасосам (соответственно при электрическом и гидравлическом приводах) осуществляется через коробку отбора мощности. В зависимости от способа установки коробки отбора мощности бывают двух типов. Коробку первого типа встраивают в трансмиссии базового автомобиля (вместо промежуточной опоры карданного вала шасси) между выходным валом коробки передач и валом редуктора заднего моста, с которыми она соединяется специально укороченными карданами. Коробку второго типа пристраивают к трансмиссии базовых автомобилей путем ее установки на коробке передач или на раздаточной коробке (раздаточная коробка служит для распределения мощности между двумя задними ведущими мостами трехосных автомобилей).

Системы и аппаратура управления приводами

Системы управления состоят из различных приборов, аппаратов и механических устройств, с помощью которых осуществляют пуск, регулирование скорости, реверс и остановку всех рабочих механизмов, их защиту от возможных перегрузок и повреждений, а также различные блокировки и автоматические режимы работы устройств привода.

Системы управления приводами подразделяют на две группы: аппараты и механические устройства, включаемые непосредственно в трансмиссию силового потока энергии, т.е. собственно аппаратура управления приводами; аппараты и механические устройства, управляющие аппаратами и устройствами первой группы. Они входят в состав систем управления приводами, поэтому иногда их называют аппаратурой систем управления.

По способу преобразования и передачи усилия машиниста управление бывает механическое, электрическое, гидравлическое или комбинированное (например, электропневматическое или электрогидравлическое). Механическое управление наиболее просто в изготовлении, надежно в эксплуатации и обеспечивает благодаря непосредственной связи руки (или ноги) машиниста с управляемым механизмом высокую чувствительность управления. Для снижения усилий, прикладываемых к рычагам и педалям управления, используют усилители (например, гидроусилитель руля, пневмоусилитель тормозов), позволяющие с небольшим усилием на рычаге создавать большие усилия на исполнительном механизме. Однако механические системы управления имеют недостатки: большое количество тяг, рычагов, шарниров и т.п., значительные металлоемкость и затраты на обслуживание и регулирование этих систем. В последнее время механические системы вытесняют более прогрессивными электрогидравлическими, электропневматическими.

Наиболее распространены системы управления первой группы — гидравлические. В этом случае машинист прикладывает меньше усилий на перемещение рукояток, чем при механическом управлении, в результате чего снижается утомляемость машиниста. Конструктивно более просто решается разводка систем управления с помощью гидравлических трубопроводов и шлангов. Примером может служить управление выносными опорами. Комбинированная система позволяет использовать рычажно-шар-нирные передачи прежде, чем включится в работу гидрораспределитель. При этом гидрораспределители размещают в отдельном блоке с выводом рукояток в удобное для работы место.

Электрогидравлическая система имеет следующие преимущества: небольшие усилия на приборах управления, возможность дистанционного управления, большой кпд, небольшая масса и малая металлоемкость благодаря небольшому количеству проводов. Недостаток этой системы в том, что при резком включении и остановке механизмов возникают значительные динамические нагрузки. Электрогидравлическое управление с пропорциональными распределителями исключает этот недостаток. Для машин с электроприводом применяют электрическую систему управления.

Аппаратура управления приводами представляет собой систему устройств из сцепных муфт включения, тормозов, гидроклапанов, гидрораспределителей.

Читать далее: Муфты

Категория: - Общие сведения

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Гидравлическая объемная трансмиссия - Большая Энциклопедия Нефти и Газа, статья, страница 1

Гидравлическая объемная трансмиссия

Cтраница 1

Гидравлические объемные трансмиссии, несмотря на сложность входящих в них агрегатов, позволяют упростить обслуживание и ремонт машин, сведя его к замене и ремонту неисправных агрегатов. Это необходимо иметь в виду при разработке гидравлической схемы. Насосы, гидромоторы, краны, клапаны, управляющие и основные золотники, шланги, фильтры и другие элементы должны быть в основном взаимозаменяемы и унифицированы.  [1]

Гидравлическая объемная трансмиссия самоходной машины предназначена для передачи мощности от двигателя внутреннего сгорания к ведущим колесам или звездочкам и изменения передаточного числа в зависимости от условий движения.  [2]

Применение в гидравлических объемных трансмиссиях нескольких насосов малого рабочего объема имеет существенные преимущества по сравнению с вариантами использования одного-двух насосов большего рабочего объема.  [3]

Для управления элементами гидравлической объемной трансмиссии применяются гидравлические дистанционные и сервоприводы, что является также основой для автоматизации совместной работы двигателя и трансмиссии с целью получения наивыгоднейших характеристик машины при различных условиях движения. Кроме этого, применение гидравлического привода для перемещения основных золотников позволяет наилучшим образом расположить их на машине, сократив длину трубопроводов большого сечения, уменьшив гидравлические потери в магистралях и вес трансмиссии, и отказаться от сложных и громоздких механических приводов управления.  [4]

При разработке схем гидравлических объемных трансмиссий для колесных машин необходимо предусматривать возможность получения гидродифференциальной связи ведущих гидромоторов.  [6]

Для машин с гидравлической объемной трансмиссией также необходимы механические стояночные или горные тормоза, без которых при стоянке машины на уклоне может произойти сползание вследствие неизбежных утечек рабочей жидкости.  [7]

Для повышения надежности работы гидравлической объемной трансмиссии необходимо предусматривать в ее схеме установку манометров, термометров и фильтров, рассчитанных на прохождение через них всего потока рабочей жидкости.  [8]

Почти во всех схемах гидравлических объемных трансмиссий для самоходных машин задний ход осуществляется реверсированием потока жидкости в трансмиссии при помощи насосов.  [9]

Таким образом, схемы гидравлических объемных трансмиссий с нереверсивными насосами и золотниками реверса, стоящими перед гидромоторами, могут оказаться приемлемыми для самоходных машин.  [10]

На самоходных машинах с гидравлической объемной трансмиссией можно осуществить гидрофикацию многих вспомогательных приводов и устройств ( гидроусилитель руля, гидростартер для пуска двигателя, догружатели ведущих колес, привод лебедки, сервомеханизмы управления и др.), питание и управление гидросистем навесных и прицепных механизмов и машин, отбор мощности на стационарные агрегаты. Мощность от трансмиссии может отбираться на другие машины и агрегаты в виде потока жидкости или в виде механической энергии.  [11]

Таким образом, при разработке схемы гидравлической объемной трансмиссии для самоходной машины не следует ориентироваться на гидрообъемную коробку передач.  [12]

Важным вопросом для самоходной машины с гидравлической объемной трансмиссией является вопрос прогрева гидросистемы в условиях низких температур. Вследствие повышения вязкости рабочей жидкости при низкой температуре нормальная работа трансмиссии нарушается, а на прокачивание жидкости через гидросистему затрачивается большая мощность, что затрудняет тро-гание машины с места. Во избежание этого целесообразно предусмотреть в схеме трансмиссии краны или золотники для закорачивания гидросистемы, исключая гидромоторы. После пуска и прогрева двигателя насосы прогоняют холодное масло по всей гидросистеме. Преодолевая различные местные сопротивления, почти все масло быстро прогревается.  [13]

Очень важным является вопрос получения при помощи гидравлической объемной трансмиссии диапазонов скоростей и тяговых усилий, необходимых для данной машины.  [14]

Страницы:      1    2

www.ngpedia.ru

Гидравлическая трансмиссия

 

Использование: изобретение относится к машиностроению, а именно к гидравлическим передачам, включающим гидронасосы и гидродвигатели объемного вытеснения, а также гидронасосы и гидроцилиндры, и может быть использовано в трансмиссии транспортных средств, а также в навесной гидравлической системе тракторов в качестве автоматической безрычажной коробки передач. Сущность изобретения: вал для регулирования производительности насоса соединен через первый кулачковый механизм 11 и 13, пружину 16 и второй кулачковый механизм 14 и 15 с тягой 19 педали управления подачей топлива и занимает положения, в которых сила давления рабочего тела в нагнетательной полости на валу уравновешена силой давления пружины на вал, величина которой в свою очередь находится в зависимости от положения педали подачи топлива, причем в такой, что число оборотов вала двигателя остается постоянным. 3 ил.

Изобретение относится к машиностроению, а именно к гидравлическим передачам, включающим гидронасосы и гидродвигатели объемного вытеснения, а также гидронасосы и гидроцилиндры, и может быть использовано в трансмиссии транспортных средств, а также в навесной гидравлической системе тракторов в качестве автоматической безрычажной коробки передач, позволяющей водителю управлять не скоростью, а ускорением движения транспортного средства, а также рабочего органа.

Поддержание постоянного числа оборотов двигателя транспортного средства при изменении внешней нагрузки на трансмиссии в известных устройствах осуществляется через автоматическое управление подачей топлива в сочетании с ручным управлением коробкой передач. В заявленном техническом решении трансмиссия является гидравлической и содержит гидродвигатель объемного вытеснения в сочетании с регулируемым гидронасосом по патенту Великобритании N 1152188, НКИ F 1 F, опубл. 1966 г. выполняющим функции бесступенчатой коробки передач, который является прототипом к заявленному устройству. Регулируемый гидронасос содержит две шестерни, введенные в зацепление и закрепленные на валах, один из которых соединен с валом двигателя внутреннего сгорания, а другой, перемещающийся для регулирования производительности насоса, связан с корпусом через пружину. Недостатком известной трансмиссии является то, что она не обеспечивает оптимального режима работы двигателя при трогании с места, при переключении передач, при несоответствии с включенной передачи скорости движения транспортного средства, и то, что она требует постоянного оперирования рычагом коробки передач. Целью изобретения является повышение удобства управления транспортным средством и обеспечение полностью оптимального режима работы двигателя путем автоматического поддержания постоянного числа оборотов его вала через изменение передаточного отношения в зависимости от внешней нагрузки и подачи топлива. Поставленная цель достигается тем, что в гидравлической трансмиссии, содержащей бесступенчатую коробку передач, выполненную в виде размещенного в корпусе регулируемого шестеренного насоса с приводным валом и перемещающимся валом для регулирования производительности насоса, свободный конец которого кинематически связан через пружину с корпусом, а приводной вал насоса соединен с коленчатым валом двигателя внутреннего сгорания, снабженного педалью управления подачей топлива, кинематическая связь вала для регулирования производительности насоса с корпусом выполнена в виде двух поворотных кулачков, двух одноплечих рычагов и двух роликов, первый из которых закреплен в центральной части одного из одноплечих рычагов, а другой на торцевой части конца вала для регулирования производительности насоса, причем первый поворотный кулачок установлен с возможностью взаимодействия с роликом конца упомянутого вала и сочленен через пружину со свободным плечом одноплечего рычага с роликом, а второй поворотный кулачок жестко закреплен на оси вращения второго одноплечего рычага с возможностью взаимодействия с роликом другого рычага, и свободное плечо второго одноплечего рычага связано с тягой педали управления подачи топлива. Такое выполнение гидравлической трансмиссии обеспечивает оптимальный режим работы двигателя постоянно путем автоматического поддержания постоянного числа оборотов его вала через изменение передаточного отношения в зависимости от внешней нагрузки и подачи топлива за счет того, что в зависимости от внешней нагрузки на трансмиссии рабочее тело в нагнетательной полости действует с определенной силой давления на вал для регулирования производительности насоса и перемещает его до положения, в котором сила давления рабочего тела уравновешена силой давления пружины, действующей на вал через первый кулачковый механизм, создающий такую зависимость положения вала от давления рабочего тела, при какой момент нагрузки на коленчатом валу двигателя остается постоянным и меняется лишь в зависимости от положения педали управления подачей топлива, которая соединена с пружиной через второй кулачковый механизм, создающий такую зависимость момента нагрузки на коленчатом валу двигателя от подачи топлива, при какой число оборотов коленчатого вала двигателя остается постоянным. Кроме того, для водителя повышается удобство управления движением транспортного средства благодаря отсутствию рычага коробки передач. Облегчается управление транспортным средством при трогании с места, при разгоне, при езде "накатом", при езде по трудной дороге. Водитель сможет поддерживать не скорость, а ускорение движения и ему достаточно будет лишь нажать педаль управления подачей топлива, и коробка передач сама "подберет" необходимое передаточное отношение и плавно изменит его согласно разгона или замедления. Техническое решение с такими отличительными признаками в патентной и научно-технической литературе на обнаружено, а поэтому предполагается, что оно отвечает критериям "новизна" и "существенные отличия". На фиг.1 изображен общий вид автоматически регулируемого насоса; на фиг. 2 сечение по А-А; на фиг.3 сечение по Б-Б. Автоматически регулируемый насос состоит из корпуса 1, в котором размещены приводной вал с шестерней 2, установленный в полной обойме 3 и усеченной обойме 4, перемещающийся вал для регулирования производительности насоса с усеченным поршнем на одном конце 5, с закрепленным с помощью резьбы полным поршнем 6 на другом конце. Между поршнями через уплотнительные шайбы 7 и 8 установлена шестерня 9 на подшипниковой втулке 10, а со стороны поршня 6 в торцевом пазу вала установлен ролик 11. К корпусу насоса прикреплен корпус механизма управления 12, в пазах которого шарнирно установлены поворотный кулачок 13 с возможностью взаимодействия с роликом 11, одноплечий рычаг 14 и поворотный кулачок 15. Поворотный кулачок 13 сочленен через пружину 16 со свободным плечом одноплечего рычага 14, в центральной части которого закреплен ролик 17 с возможностью взаимодействия с поворотным кулачком 15. На оси вращения последнего жестко закреплен одноплечий рычаг 18, свободное плечо которого связано с тягой педали управления подачей топлива 19. Элементы механизма управления закрыты крышкой 20, закрепленной на корпусе 12. На входе насоса между поршнями и обоймами в корпусе имеется канал 21 для сообщения торцевых полостей с входным отверстием. На выходе насоса между поршнями и обоймами в корпусе имеется выточка, в которой расположены добавочный поршень 22, закрепленный на усеченном поршне, и уплотняющая призма 23, закрепленная на усеченной обойме. Автоматически регулируемый насос работает следующий образом. От двигателя внутреннего сгорания приводятся во вращение шестерни насоса 2 и 9, и рабочее тело переносится во впадинах их зубьев из входной полости в нагнетательную. При появлении внешней нагрузки на трансмиссии в нагнетательной полости возникает давление рабочего тела на поршни 5, 6 и 22 вала 5. Площадь полного поршня выполнена большей, чем площадь усеченного и добавочного вместе взятых, поэтому рабочее тело действует с силой давления на вал в сторону ролика 11, который перемещается под действием этой силы, поворачивает кулачок 13 и растягивает пружину 16 до положения равновесия. Каждому значению внешней нагрузки на трансмиссии будет соответствовать определенное положение вала 5. При увеличении внешней нагрузки производительность насоса уменьшится, а при уменьшении внешней нагрузки производительность насоса увеличится. Чтобы при этом оставался постоянным момент нагрузки на коленчатом валу двигателя, необходимо выполнение следующей зависимости длины зацепления зубьев шестерней l от величины давления рабочего тела p: pl const. Кулачок 13 служит для получения этой зависимости. При нажатии на педаль подачи топлива перемещается тяга 19, которая поворачивает одноплечий рычаг 18. Одноплечий рычаг 18 действует через поворотный кулачок 15 и ролик 17 на одноплечий рычаг 14, а тот перемещает закрепленный на нем конец пружины 16. Так как зависимость силы давления пружины от длины перемещения ее конца является функцией линейной, то постоянство момента нагрузки на коленчатом валу при изменении внешней нагрузки на трансмиссии при этом не нарушится. Момент нагрузки на коленчатом валу будет меняться при повороте педали управления подачей топлива. Поворотный кулачок 15 служит для получения такой зависимости момента нагрузки от подачи топлива, при какой остается постоянным число оборотов коленчатого вала двигателя. Технико-экономическая эффективность данного предложения заключается в том, что по сравнению с прототипом обеспечивается полностью оптимальный режим работы двигателя и повышаются удобства управления транспортным средством.

Формула изобретения

Гидравлическая трансмиссия, содержащая бесступенчатую коробку передач, выполненную в виде размещенного в корпусе регулируемого шестеренного насоса с приводным валом и перемещающимся валом для регулирования производительности насоса, свободный конец которого кинематически связан через пружину с корпусом, а приводной вал насоса соединен с коленчатым валом двигателя внутреннего сгорания, снабженного педалью управления подачей топлива, отличающаяся тем, что, с целью обеспечения оптимального режима работы двигателя путем автоматического поддержания постоянного числа оборотов его вала через изменение передаточного отношения в зависимости от внешней нагрузки и подачи топлива и повышения удобства управления транспортным средством, кинематическая связь вала для регулирования производительности насоса с корпусом выполнена в виде двух поворотных кулачков, двух одноплечих рычагов и двух роликов, первый из которых закреплен в центральной части одного из одноплечих рычагов, а другой на торцевой части конца вала для регулирования производительности насоса, причем первый поворотный кулачок установлен с возможностью взаимодействия с роликом конца упомянутого вала и сочленен через пружину со свободным плечом одноплечего рычага с роликом, а второй поворотный кулачок жестко закреплен на оси вращения второго одноплечего рычага с возможностью взаимодействия с роликом другого рычага, и свободное плечо второго одноплечего рычага связано с тягой педали управления подачей топлива.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

гидравлическая трансмиссия - патент РФ 2526017

Изобретение относится к машиностроению, а именно к гидравлическим передачам, включающим гидронасосы и гидродвигатели объемного вытеснения. Гидравлическая трансмиссия содержит гидронасос, в двухсекционном корпусе которого находятся приводной вал с двумя расположенными через 180° зубьями и связанный с ним через шестеренную передачу ведомый вал с двумя шиберами. Один из зубьев и соответствующий шибер находятся в передней секции корпуса, а другой из зубьев и соответствующий шибер - в задней секции. Нагнетательная полость передней секции соединена каналом с всасывающей полостью задней секции. Достигается повышение КПД устройства. 4 ил. гидравлическая трансмиссия, патент № 2526017

Рисунки к патенту РФ 2526017

Изобретение относится к машиностроению, а именно к гидравлическим передачам, включающим гидронасосы и гидродвигатели объемного вытеснения, и может быть использовано в трансмиссии транспортных средств.

Известен насос (см. Кожевников С.Н. и др. Элементы механизмов. Государственное издательство оборонной промышленности, 1956, с.801, фиг.2575). В его корпусе находятся приводной вал, выполненный заодно с расположенными через 180° двумя зубьями, и ведомый вал, выполненный в виде шибера с двумя впадинами для зубьев. При вращении приводного вала происходит следующее: один зуб движется в охватывающем приводной вал корпусе и создает поток рабочего тела из нагнетательной полости, а другой зуб в это время соответственно движется в впадине шибера ведомого вала и обеспечивает границу между нагнетательной и всасывающей полостями.

Первым недостатком известного насоса является то, что он не сможет достичь рабочего давления в гидравлической трансмиссии из-за сложности обеспечения надежного уплотнения между зубьями и впадинами шибера.

Вторым недостатком является наличие колебания величины потока рабочего тела, обусловленные пульсирующим выдавливанием в нагнетательную полость рабочего тела зубьями из впадин.

Техническая задача устройства состоит в том, чтобы исключить необходимость уплотнения между зубьями и впадинами и исключить выдавливание зубьями рабочего тела из впадин в нагнетательную полость.

Поставленная задача выполняется за счет того, что гидравлическая трансмиссия содержит гидронасос, в корпусе которого расположены приводной и ведомый валы с выполненными заодно зацепленными между собой одинаковыми шестернями. Вместе с тем, приводной вал выполнен заодно с расположенными через 180° двумя зубьями, а ведомый вал выполнен в виде шиберов с впадинами для зубьев. Корпус разделен выполненной заодно с приводным валом перегородкой в виде круга с диаметром окружности вершин зубьев на переднюю и заднюю секции, при этом один из зубьев и соответствующий шибер расположены в передней секции, а другой из зубьев и соответствующий шибер расположены в задней секции. Всасывающая полость в передней секции соединена с входным отверстием, нагнетательная полость соединена через огибающий корпус канал с всасывающей полостью в задней секции, и нагнетательная полость в задней секции соединена с выходным отверстием.

В предлагаемом устройстве нагнетательная полость будет иметь надежное уплотнение, к тому же в нее не будет выдавливаться рабочее тело из впадин шиберов, потому что она не будет сообщаться с зазором между зубьями и впадинами.

Сущность изобретения поясняется чертежами, где на фиг.1-4 изображена схема создания в насосе потока рабочего тела: на фиг.1 - в передней секции; на фиг.2 - при переходе из передней секции в заднюю; на фиг.3 - в задней секции; на фиг.4 - при переходе из задней секции в переднюю.

Гидравлическая трансмиссия содержит насос, в корпусе 1 которого расположены приводной вал 2 и ведомый вал 3 с выполненными заодно зацепленными между собой одинаковыми шестернями соответственно 4 и 5. Вместе с тем, приводной вал выполнен с двумя расположенными через 180° зубьями, а ведомый вал выполнен в виде шиберов с впадинами для зубьев. Корпус разделен выполненной заодно с приводным валом перегородкой в виде круга с диаметром окружности вершин зубьев на переднюю секцию 1п и заднюю секцию 1з. При этом один из зубьев и соответствующий шибер расположены в передней секции, а другой из зубьев и соответствующий шибер расположены в задней секции. Всасывающая полость в передней секции соединена с входным отверстием «Вх», нагнетательная полость соединена через огибающий корпус канал «Кан» с всасывающей полостью в задней секции, а нагнетательная полость в задней секции соединена с выходным отверстием «Вых».

Работа устройства

При вращении приводного вала 2 происходит следующее (см. фиг.1). Когда зуб приводного вала в передней секции 1п движется по нижней половине круговой траектории, а в задней секции 1з соответственно - по верхней половине круговой траектории, то рабочее тело в передней секции всасывается из входного отверстия «Вх» в образованную сзади хода зуба полость. Из образованной спереди хода зуба полости рабочее тело нагнетается через канал «Кан» и затем в задней секции через пространство между зубом и корпусом, а также через зазор между зубом и впадиной шибера ведомого вала 3 в выходное отверстие «Вых».

Когда оба зуба проходят через горизонтальное положение(см. фиг.2), то рабочее тело всасывается из входного отверстия в переднюю секцию и одновременно нагнетается из последовательно соединенных образованных спереди хода зубьев в передней и задней секциях полостей в выходное отверстие.

Когда зуб в передней секции движется по верхней половине круговой траектории (см. фиг.3), а в задней секции соответственно по нижней половине траектории, то рабочее тело свободно всасывается из входного отверстия через переднюю секцию в заднюю секцию, и затем нагнетается из задней секции в выходное отверстие.

Когда зубья проходят через горизонтальное положение (см. фиг.4), то рабочее тело начинает нагнетаться из передней секции и продолжает нагнетаться из задней секции.

Технико-экономическая эффективность данного предложения заключается в том, что предлагаемая гидравлическая трансмиссия будет иметь высокое рабочее давление, благодаря повышению надежности уплотнения нагнетательных полостей, будет иметь большой коэффициент полезного действия, благодаря отсутствию выдавливания в нагнетательные полости рабочего тела из впадин шиберов при вхождении в них зубьев, и будет иметь равномерный поток рабочего тела, благодаря последовательному соединению нагнетательных полостей.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Гидравлическая трансмиссия, содержащая гидронасос, в корпусе которого расположены приводной и ведомый валы с выполненными заодно зацепленными между собой одинаковыми шестернями, причем приводной вал выполнен заодно также с расположенными через 180° двумя зубьями, а ведомый вал выполнен в виде шиберов со впадинами для зубьев, отличающаяся тем, что корпус разделен выполненной заодно с приводным валом перегородкой в виде круга с диаметром окружности вершин зубьев на переднюю и заднюю секции, и один из зубьев и соответствующий шибер расположены в передней секции, а другой из зубьев и соответствующий шибер расположены в задней секции, при этом в передней секции всасывающая полость соединена с входным отверстием, нагнетательная полость соединена через огибающий корпус канал с всасывающей полостью в задней секции, а нагнетательная полость в задней секции соединена с выходным отверстием.

www.freepatent.ru

Гидравлическая система объемной трансмиссии

 

Изобретение относится к транспортному машиностроению и может быть использовано в системе трансмиссии транспортных средств, преимущественно гусеничных машин. Гидравлическая система включает расходный бак 2, моноблок основных гидромашин с узлом управления 6, обратными 7 и предохранительными 8 клапанами, насос управления 3, теплообменный аппарат 13, соединительные магистрали. Насос управления 3 выполнен клапанно-щелевым с регулятором подачи 15, бак 2 – ступенчатый цилиндр 9 с дифференциальным поршнем 10. Полость 11 с меньшей площадью поршня 10 соединена со входом узла управления 6 и выходом насоса управления 3. Полость 12 поршня 10 соединена со входами моноблока 1 основных гидромашин, насоса управления 3 и выходом теплообменного аппарата 13, вход которого соединен с корпусными полостями моноблока 1 и насоса управления 3. Технический результат – разработана автономная гидравлическая система объемной трансмиссии, упрощена конструкция и повышена надежность. 1 ил.

Изобретение относится к транспортному машиностроению и может быть использовано в системе трансмиссии транспортных средств, преимущественно гусеничных машин.

Известные гидравлические системы гидрообъемных трансмиссий (ГОТ) включают следующие типовые элементы: расходный бак, блок основных гидромашин, узел управления, вспомогательный насос, фильтр, теплообменный аппарат, соединительные магистрали. Выполненные по типовой конфигурации системы имеют ряд недостатков: сложность конструкции, обусловленная раздельной установкой ряда моторов [1, с. 71-72, фиг.41, с. 77, 46], питаемых от одного насоса; дополнительные затраты мощности из-за применения схемы с приводом нескольких нерегулируемых насосов [1, с. 82, фиг.52], перегрузка гидромашин [1, с. 66, фиг.36] из-за отсутствия предохранительных клапанов.

Наиболее близким по технической сути и количеству совпадающих признаков к предлагаемому изобретению является выбранная в качестве прототипа система ГОТ [2, фиг.1, 2]. В известной системе, включающей расходный бак (резервуар), регулируемый гидронасос с узлом (системой) управления и нерегулируемый гидромотор, клапаны обратные и предохранительные, вспомогательный насос (подпитки), фильтр, теплообменный аппарат (охладитель), соединительные магистрали, двигатель приводит во вращение вал регулируемого насоса и связанный с ним вспомогательный насос, последний всасывает рабочую жидкость из расходного бака через фильтр и осуществляет компенсацию утечек в гидромашинах и обеспечивает требуемый расход для узла управления, под действием которого при подаче управляющей команды происходит изменение рабочего объема гидронасоса и его производительности, приводящее к адекватному изменению частоты вращения гидромотора. Избыток подачи вспомогательного насоса через переливной клапан постоянно направляется в корпус мотора, где соединяется с утечками основных гидромашин и проходит через теплообменный аппарат в расходный бак, выполненный в негерметичном варианте и сообщающийся с окружающей средой.

В данной системе вспомогательный насос выполняет две функции - служит источником давления для узла управления, где необходима относительно малая подача рабочей жидкости при высоком давлении, и компенсирует утечки рабочей жидкости по основным гидромашинам, где необходима относительно высокая подача рабочей жидкости при низком давлении. Совмещение функций позволило уменьшить номенклатуру и упростить конструкцию системы, но привело к повышенной теплоотдаче в рабочую жидкость за счет непроизводительного повышения мощности на привод вспомогательного насоса. Из-за постоянного контакта рабочей жидкости с окружающей средой и, как следствие, ее загрязнения снижается надежность ГОТ.

Предлагаемым изобретением решается задача разработки автономной системы ГОТ, имеющей упрощенную конструкцию, пониженную по сравнению с прототипом теплоотдачу в рабочую жидкость и повышенную надежность.

Для достижения этого технического результата в системе гидравлической объемной трансмиссии, включающей расходный бак, моноблок основных гидромашин с узлом управления, обратными и предохранительными клапанами, насос управления, теплообменный аппарат, соединительные магистрали, согласно изобретению насос управления выполнен клапанно-щелевым с регулятором подачи, а бак представляет собой ступенчатый цилиндр с дифференциальным поршнем, одна полость которого с меньшей площадью поршня соединена со входом узла управления и выходом регулируемого насоса управления, а вторая полость - со входами моноблока основных гидромашин, насоса управления и выходом теплообменного аппарата, вход которого соединен с корпусными полостями моноблока и насоса управления.

Перечисленные выше отличительные признаки заявляемой системы ГОТ являются существенными, так как каждый из них необходим, а вместе они достаточны для достижения указанного технического результата в сравнении с прототипом и известными подобными системами. Между отличительными признаками и достигаемым техническим результатом имеется причинно-следственная связь.

Выполнение системы ГОТ в автономном герметичном варианте предохраняет рабочую жидкость от загрязнения извне, позволяет исключить из системы фильтр. Использование расходного бака как компенсационно-поддавливающего устройства, выполненного в виде ступенчатого цилиндра с дифференциальным поршнем, одна полость которого с меньшей площадью поршня соединена с выходом насоса управления, а вторая полость - с входом моноблока основных гидромашин, позволяет исключить из системы насос подпитки, обеспечивая при этом в процессе работы необходимый для нормального функционирования гидромашин уровень давления рабочей жидкости на входе в моноблок и насос управления. Применение в качестве источника давления управления регулируемого насоса с неподвижным цилиндровым блоком и клапанным распределением обеспечивает простоту конструкции и существенное снижение мощности на привод насоса управления за счет подачи в его камеры дозированного количества рабочей жидкости, необходимого по условиям управления ГОТ, что нереализуемо в конструктивном профиле насоса подпитки прототипа.

Заявляемое техническое решение является новым, поскольку оно неизвестно из уровня техники, имеет изобретательский уровень, так как предложенное схемное решение автономной системы ГОТ явным образом не следует из уровня техники, промышленно применимо, поскольку оно предназначено для использования в трансмиссии гусеничной машины.

Техническая сущность и принцип действия системы ГОТ поясняются чертежом.

Система ГОТ функционально включает три блока: моноблок основных гидромашин 1, расходный бак 2 и насос управления 3, связанные соединительными магистралями. Моноблок 1 состоит из реверсивного регулируемого гидронасоса 4, нерегулируемого гидромотора 5, узла управления 6, обратных 7 и предохранительных 8 клапанов. Расходный бак 2 представляет собой ступенчатый цилиндр 9 с дифференциальным поршнем 10, полость 11 которого с меньшей площадью поршня 10 соединена со входом узла управления 6 и выходом насоса управления 3, а вторая полость 12 сообщена со входом моноблока 1, насоса управления 3 и выходом теплообменного аппарата 13, вход которого соединен с корпусными полостями моноблока 1 и насоса управления 3. Насос управления 3 имеет собственно насосную часть, выполненную в виде клапанно-щелевого насоса 14, и регулятор подачи 15.

Система ГОТ работает следующим образом.

Двигатель приводит во вращение валы реверсивного регулируемого гидронасоса 4 и насоса управления 3. Клапанно-щелевой насос 14 всасывает через регулятор подачи 15 рабочую жидкость из бака 2 и подает под давлением на вход к узлу управления 6 и в полость 11 цилиндра 9, вызывая пропорционально соотношению площадей дифференциального поршня 10 увеличение давления в полости 12. Благодаря этому основные гидромашины 4 и 5 работают под избыточным давлением на входе, что исключает разрыв струи, образование пены и кавитационные явления. Это обеспечивает надежную работу системы ГОТ.

Бесступенчатое регулирование частоты вращения вала гидромотора 5 осуществляется путем изменения рабочего объема и производительности гидронасоса 4 под действием давления рабочей жидкости узла управления 6 при подаче на него управляющей команды. Давление в связке насос-гидромотор определяется сопротивлением движения транспортной машины, для предохранения системы ГОТ от перегрузок в моноблок 1 встроены предохранительные клапаны 8. Переключение направления подпитки основных гидромашин при реверсировании регулируемого гидронасоса осуществляется автоматически посредством обратных клапанов 7.

При работе ГОТ на установившемся режиме насос управления 3 обеспечивает минимальную требуемую подачу и необходимый уровень избыточного давления на входе гидромашин 4 и 5, увеличивая ее практически только при переходных процессах разгона или торможения гидромотора 5, что позволяет дополнительно снизить затраты мощности на привод насоса управления 3 и теплоотдачу в рабочую жидкость.

Использование изобретения в составе ГОТ или гидрообъемной механической трансмиссии (ГОМТ), обеспечивающих улучшение управляемости поступательным и вращательным движениями транспортной машины, позволяет существенно повысить надежность гидравлической системы и машины в целом, снизить теплоотдачу в рабочую жидкость.

Автономная система разработана для ГОМТ мобильной гусеничной машины, выполненной на базе аксиально-поршневой передачи с рабочим объемом гидромашин 280 см3.

Использованные источники

1. Комисарик С.Ф., Ивановский Н.А. Гидравлические объемные трансмиссии. - М.: Государственное научно-техническое издательство машиностроительной литературы, 1963. - 156 с.

2. Кировоградский завод тракторных агрегатов. Объемный гидропривод. Техническое описание и инструкция по эксплуатации ГСТ 90-00.000 ТО. Разработчик - ОАО “Гидросила”. Украина, 25006, г. Кировоград, ул. Братиславская, 5.

Формула изобретения

Гидравлическая система объемной трансмиссии, включающей расходный бак, моноблок основных гидромашин с узлом управления, обратными и предохранительными клапанами, насос управления, теплообменный аппарат, соединительные магистрали, отличающаяся тем, что насос управления выполнен клапанно-щелевым с регулятором подачи, а бак представляет собой ступенчатый цилиндр с дифференциальным поршнем, одна полость которого - с меньшей площадью поршня - соединена со входом узла управления и выходом регулируемого насоса управления, а вторая полость - со входами моноблока основных гидромашин, насоса управления и выходом теплообменного аппарата, вход которого соединен с корпусными полостями моноблока и насоса управления.

РИСУНКИРисунок 1

Похожие патенты:

Изобретение относится к области гидромашиностроения, более конкретно - к регулируемым гидравлическим передачам объемного типа, устанавливаемым в механизмах поворота трансмиссии гусеничных машин

Изобретение относится к системам передачи энергии от двигателя

Изобретение относится к области гидромашиностроения

Изобретение относится к объемным гидроприводам, в частности к регулированию скорости рабочих органов строительных, дорожных и других машин

Изобретение относится к области автомобилестроения, машиностроения и может быть использовано в трансмиссиях как переднеприводных, так и заднеприводных легковых автомобилей, а также других транспортных средств

Изобретение относится к области машиностроения и может быть использовано в тех устройствах, где требуется передавать крутящий момент от двигателя к исполнительным механизмам, например в трансмиссиях самоходных машин

Изобретение относится к гидрообъемному приводу ходовой части транспортного средства, системе автоматической смены рабочей жидкости гидрообъемного привода ходовой части транспортного средства, насосному агрегату гидрообъемного привода ходовой части транспортного средства, системе кондиционирования и реверса гидрообъемного привода ходовой части транспортного средства, гидромоторному агрегату гидрообъемного привода ходовой части транспортного средства, предназначенному для самоходных машин

Изобретение относится к области гидромашиностроения, более конкретно - к регулируемым гидравлическим передачам объемного типа, устанавливаемым в механизмах поворота трансмиссии гусеничных машин

Изобретение относится к транспортному машиностроению и может быть использовано в качестве механизма передач и поворота в трансмиссиях, преимущественно гусеничных машин

Изобретение относится к наземной транспортной технике, а конкретно к механизмам поворота быстроходных гусеничных машин

Изобретение относится к области машиностроения, а именно к самоходным транспортным средствам на колесном и гусеничном ходу, в составе трансмиссии которых содержится гидрообъемная передача механизма поворота

Изобретение относится к устройствам для управления транспортными средствами с помощью дифференциального привода движителей, расположенных на противоположных сторонах транспортного средства, использующим гидравлический привод

Изобретение относится к машиностроению и может быть использовано в качестве привода ведущих колес транспортного средства или механизма управления поворотом

Изобретение относится к полноприводным транспортным средствам, имеющим передачи, обеспечивающие дифференциальное распределение мощности

Изобретение относится к гусеничным машинам, а именно к трансмиссиям гусеничных машин, и может быть использовано в качестве унифицированной трансмиссии базового шасси как для быстроходных транспортных машин, так и для инженерных машин с рабочим органом непрерывного действия, а также для работы в обоих режимах

Изобретение относится к области транспортного машиностроения, а конкретно, к трансмиссиям гусеничных машин, имеющих вспомогательный привод от гидрообъемной передачи

Изобретение относится к гусеничным машинам, конкретно к трансмиссиям гусеничных машин, имеющих основной привод, через коробку передач на движители, и вспомогательный привод, через гидрообменную передачу (ГОП), и может быть использовано в качестве унифицированной трансмиссии как для быстроходной машины, так и для гусеничной землеройной машины с рабочим органом непрерывного действия, а также для работы в обоих режимах

Изобретение относится к области гидромашиностроения, более конкретно - к регулируемым гидравлическим передачам объемного типа, устанавливаемым в механизмах поворота трансмиссии гусеничных машин

Изобретение относится к транспортному машиностроению и может быть использовано в системе трансмиссии транспортных средств, преимущественно гусеничных машин

www.findpatent.ru