4.4 Асинхронный электропривод с частотным регулировани­ем скорости. Частотный привод асинхронный


Преобразователи частоты для асинхронных двигателей

До появления частотных преобразователей на рынке современной энергетики, электромонтёрам приходилось применять для подключения асинхронного двигателя стартовый или фазосдвигающий конденсатор большой ёмкости.

Двигатель при этом работал, но существенно терял мощность. Также, применение конденсаторов сильно разогревало обмотки двигателя, что сильно снижало его ресурс работы, и двигатели часто приходилось «перематывать». Учитывая, что обмотки асинхронного двигателя делаются из медной проволоки, то такие ремонты приносили большой ущерб.

Так как асинхронный двигатель является составной частью почти каждого современного привода, то вопрос создания частотного регулирования вставал на особый уровень. И вот, частотники уже повсеместно применяются для подключения электрического двигателя к сети и его управление.

По сути, частотный инвертор, это прибор, изменяющий частоту поданного на обмотки напряжения с ШИМ-регулированием. Благодаря частотнику, получилось подключить асинхронный двигатель к сети без ущерба его ресурсу, без перегрева, и ещё дать массу возможностей по управлению скоростью вращения вала.

Также, применяя различные интерфейсы передачи данных и команд, применение частотников позволило объединить все приводы большого предприятия в одно диспетчерскую систему управления и контроля параметров.

В мир современной автоматизации технологических процессов, это весомый аргумент.

Устройство частотных преобразователей

Современный частотный инвертер состоит из двух принципиальных блоков. Первый блок полностью сглаживает напряжение и на выходе выдаёт постоянное. Постоянное напряжение подаётся на силовой блок генерации частоты. После преобразования, на выходе из второго блока частота напряжения уже будет такая, какая задана настройкой.

За возможность изменять частоту напряжения отвечает микропроцессор, который встроен в частотник. Используя заданную программу, процессор следит за выходной частотой напряжения, а также за параметрами работы электрического двигателя.

По сути, частотные преобразователи для асинхронных двигателей принцип работы которых заключён в простом вырабатывании нужной частоты переменного тока, это модуляторы нужной природы напряжения, которая необходима для того или иного оборудования. Именно это и снизило негативное влияние на работу электрического двигателя, которое имело место быть при использовании конденсатов.

Электрический двигатель получает именно такое напряжение, которое положено ему для нормальной и полноценной работы.

Считаем нужным отметить, что и при наличии линии трёхфазного напряжения, не всегда рационально подключать электрический двигатель к сети просто через выключатель. В таком случае, двигатель будет работать, но регулировать его работу не получится. Не получится и следить за состоянием обмоток.

В промышленном исполнении можно встретить два основных типа частотных преобразователей:

  • Специальные.
  • Универсальные.

Специальный частотный преобразователь для асинхронного двигателя, схема которого несколько отличается от универсального, изготавливается под конкретное оборудование по конкретным потребностям. Как правило, это очень урезанные версии, не способные на работу с любым оборудованием.

Универсальные частотные инвертера могут работать, как и в специальном оборудовании, так и во всех остальных вариантах применения. На то они и универсальные, что их можно настраивать и программировать под любые нужды.

Поэтому, выбор частотного преобразователя для асинхронного двигателя должен быть не столько продиктован конкретными необходимостями производства, но и возможностью модернизации оборудования.

Практически во всех частотниках сегодня реализована возможность установки и контроля режима работы электрического двигателя с пульта управления. Первый интерфейс управления встроен в сам корпус частотника. Там же есть и ручка регулирования скорости вращения двигателя.

Но можно и применять выносные пульты управления. Которые можно располагать как в диспетчерской, так и непосредственно на станке, который приводится в движение электрическим двигателем.Такое чаще встречается в ситуациях, когда станок с двигателем находится в помещении, где не рекомендуется установка частотного инвертора. И его устанавливают вдали от оборудования.

Большая часть инвертеров частоты позволяют программировать работу оборудования. Но, задать программу просто с пульта управления не получится. Для этого используется интерфейс передачи данных и настройки, который, при помощи компьютера позволяет задать нужную программу работы.

Разница типов сигналов управления

При проектировании цеха очень важно учитывать, что общение частотных преобразователей с диспетчерским пультом будет происходить при помощи электрических импульсов по проводам связи. Пи этом, не стоит забывать, что разные стандарты связи по-разному влияют друг на друга. Посему, переда данных одним способом, может существенно снижать качество передачи данных другим способом.Поэтому, расчет частотного преобразователя для асинхронного двигателя должен производиться не только по его электротехническим показателям, но и по показателям совместимости с сетью.

Выбор мощности частотного преобразователя

Вопрос мощности частотника, скорее всего, стоит на первом плане, при расчете привода для любого станка или агрегата. Дело в том, что большинство частотных инвертеров способны выдерживать большие перегрузки до 200 – 300 %. Но, это совсем не означает, что для питания электрического двигателя можно смело покупать частотник сегментом ниже, чем требуется по планированию.

Выбор мощности частотного преобразователя осуществляется с обязательным запасом в 20 – 30%. Игнорирование этого правила может повлечь за собой выход из строя частотного преобразователя и простой оборудования.

Также важно учитывать пиковые нагрузки, которые может выдерживать частотник. Дело в том, что при старте электрического двигателя его пусковые токи могут сильно превышать номинальные. В некоторых случаях, пусковой ток превышает номинальный в шесть раз! Частотик должен быть рассчитан на такие изменения.

Каждый электрический двигатель оборудован вентилятором охлаждения. Это лопасти, которые установлены в задней части двигателя и по мере вращения вала прогоняют через корпус мотора воздух.

Если электрический двигатель работает на пониженных оборотах, то мощности потока воздуха может не хватить для охлаждения.

В этом случае, нужно выбирать частотник с датчиками температуры двигателя. Или организовать дополнительное охлаждение.

Электромагнитная совместимость преобразователей частоты

При расчёте и подключении частотника к сети и электрическому двигателю, следует помнить, что он очень подвержен помехам. Также, преобразователь частоты может и сам стать источником помех для другого оборудования. Именно поэтому, все подключения к частотнику и от него выполняются экранированными кабелями и выдерживанием дистанции в 10 см друг от друга.

По своей сути, применение частного преобразователя для питания асинхронного электрического двигателя позволило существенно продлить жизнь электрического двигателя, дало возможность регулировать работу двигателя и хорошо экономить на расходе электрической энергии.

Частотник, частотный преобразователь1ф 220 — 3ф220 для асинхронного электродвигателя

Watch this video on YouTube

chistotnik.ru

4.4 Асинхронный электропривод с частотным регулировани­ем скорости

Возможность частотного регулирования скорости асинхрон­ного двигателя-регулирование путем изменения частоты пи­тающего напряжения – вытекает из того обстоятельства, что ско­рость вращения электромагнитного поля статора пропорциональ­на частоте питающего напряжения

(6.2)

Следует также учесть, что поскольку с изменением частоты питающего напряжения изменяется и величина потока двигателя Ф1

(6.3)

то в большинстве случаев одновременно с изменением частоты питающего напряжения необходимо регулировать и его амплитуду. Необходимость регулирования напряжения при уменьшении частоты вниз от номинальной связана с тем, что из-за уменьшения индиви­дуального сопротивления обмоток двигателя ток намагничивания будет возрастать, что приведет к насыщению магнитопровода двигателя и его перегреву. Регулирование напряжения следует производить та­ким образом, чтобы скольжение двигателя было минимальным.

Рис.6.2. Схема вклю­чения асинхронного двигателя с питанием

от преобразователя частоты

Для реализации способа частотного регулирования асин­хронный короткозамкнутый двигатель включается в питающую сеть с параметрами Uc и fcчерез преобразователь частотыUF(см.рис.6.2). В качестве преобразователей частоты в настоящее время используются, в основном, полупроводниковые преобразо­ватели частоты.

Существующие вентильные регулирование скорости изменением частоты реализуется с помощью полупроводниковых преобра­зователей частоты которые мож­но разделить на две группы:

1 – преобразова­тели с непосредствен­ной связью питающей сети и нагрузки, сокращенно НПЧ;

2 – преобразова­тели частоты с промежуточным зве­ном постоянного тока.

Преобразователь частоты с непосред­ственной связью включается в статорную цепь асинхронного двигателя и служит для преобразования напряжения стандартной частоты в регулируемое в определенных пределах напряжение по величине и частоте.

Преобразователи частоты с непосредственной связью обычно представляют собой три согласованно работающих реверсивных тиристорных преобразователя постоянного тока. Блок схема не­посредственного преобразователя частоты представлена на рис.6.7.

Рис.6.7. Блок-схема преобразователя час­тоты с непосредственной связью

Каждая фаза асинхронного двигателя питается от своего ре­версивного преобразователя.

Преобразователи частоты с не­посредственной связью по схеме рис.6.7 дают воз­можность при час­тоте питания 50Гц получать выход­ную частоту в пределах 0-20Гц. По­этому асинхронные электроприводы данного типа чаще всего применяются для тихоходных безредукторных электроприводов средней и большой мощности.

Основным дос­тоинством преобразователей частоты с непосредственной связью является естест­венная коммутация вентилей под действием напряжения питаю­щей сети, как это происходит в управляемых тиристорных преобразователях (выпрямителях), используемых в приводе посто­янного тока. Благодаря возможности перевода преобразователя из выпрямительного в инверторный режим, в рассматриваемых схемах возможно торможение асинхронного двигателя с отдачей энергии торможения в сеть (рекуперативное торможение). Меха­нические характеристики асинхронного электропривода с преоб­разователем частоты с непосредственной связью показаны на рис.6.9.

Рис.6.9. Механические характеристики электропривода НПЧ-АД

studfiles.net

Принцип действия частотного управления асинхронным двигателем ~ Электропривод

Чтобы понять способ частотного управления асинхронным двигателем, а конкретно его угловой скоростью, при помощи регулирования частоты подводимого напряжения, необходимо рассмотреть формулу зависимости синхронной частоты вращения двигателя от частоты подводимого напряжения f1 и числа пар полюсов двигателя рn. Из формулы видно, что скорость вращения электромагнитного поля статора прямо пропорциональна частоте питающего напряжения.

По этому принципу возможно построение широкорегулируемых электроприводов с жесткими механическими характеристиками. Важным преимуществом частотного управления асинхронным двигателем являются благоприятные энергетические показатели. Это объясняется тем, что двигатель с частотным управлением работает при малых скольжениях, что обусловливает малые потери и высокий КПД во всем диапазоне регулирования скорости. Однако при изменении частоты возникает необходимость одновременного регулирования напряжения, подводимого к статору. С изменением частоты питающего напряжения изменяется и величина потока двигателя Ф1, поэтому одновременно с изменением частоты питающего напряжения необходимо регулировать и его амплитуду.

Необходимость уменьшения напряжения при уменьшении частоты питающего напряжения возникает из за того, что с уменьшением сопротивления обмоток двигателя, ток намагничивания возрастает. Это приводит к тому, что магнитопровод двигателя насыщается, что ведет к перегреву двигателя. При частотном управлении двигателем, необходимо следить, чтобы скольжение двигателя было минимальным.

В настоящее время в качестве преобразователей частоты используются полупроводниковые статические преобразователи частоты. Если пренебрегать величиной активного сопротивления статора (r1=0), то, для того чтобы при частотном управлении (уменьшении частоты вниз от номинальной) сохранять критический момент постоянным, нужно величину напряжения изменять пропорционально изменению частоты.

Механические характеристики, соответствующие частотному регулированию при выполнении соотношения показаны на рисунке сплошными линиями.

Для того чтобы реализовать принцип частотного управления двигателем, необходимо управлять напряжением и током в статоре асинхронной машины при изменении частоты питания. Поэтому в разомкнутых системах ПЧ — АД не удается достичь большого диапазона регулирования скорости, так как в сильной степени проявляется статизм (влияние изменений момента нагрузки) на механические характеристики привода. Кроме того, при снижении скорости может возникать область статической неустойчивости, которая затрудняет практическое использование таких приводов. Существует несколько алгоритмов одновременного изменения частоты и напряжения статора в статическом режиме. Чаще всего стремятся сохранить постоянной перегрузочную способность двигателя, т.е. сделать так, чтобы при всех режимах отношение максимального момента к моменту сил сопротивления оставалось постоянным:

Таким образом, напряжение необходимо регулировать не только в функции частоты, но и в функции нагрузки. Критический момент трехфазного АД:

где ω0- синхронная скорость; Rj — активное фазное сопротивление обмотки статора; XK=XJ+X’2 — индуктивное фазное сопротивление к.з. Пренебрегая величиной Ri по сравнению с Xk и учитывая, что Xk=2f1Lf, можно получить

Следовательно, критический момент прямо пропорционален квадрату напряжения и обратно пропорционален квадрату частоты, поэтому

Таким образом, для сохранения постоянной перегрузочной способности необходимо изменять напряжение пропорционально частоте и корню квадратному от момента нагрузки. Этот общий принцип регулирования может быть уточнен для конкретных режимов работы механизма.

eprivod.com

Частотный преобразователь, Теоретические основы, Принцип работы

Теория частотного регулирования была разработана еще в 30х годах прошлого столетия. Однако только последние 20 лет стала активно использоваться в мире, а в странах СНГ опыт обширной эксплуатации таких устройств насчитывает порядка 10 лет. Такую победу частотно регулируемого привода над приводом постоянного тока позволила осуществить новая элементная база, а именно относительно недорогие IGBT транзисторы (Insulated Gate Bipolar Transistor — биполярный транзистор с изолированным затвором), рассчитанных на токи до нескольких килоампер, напряжение до нескольких киловольт и имеющих частоту коммутации 30 кГц и выше.

Для лучшего понимания принципов, лежащих в основе электронных систем регулирования скорости вращения, напомним устройство асинхронного электродвигателя с короткозамкнутым ротором — наиболее массового, повсеместно применяемого типа электродвигателя. Достаточно сказать, что суммарный объем электроэнергии, используемой для приведения в движение всех приводов с асинхронными двигателями, составляет более 50% всей потребляемой электроэнергии. Такой двигатель имеет неподвижный статор с обмотками, образующими полюса, и подвижный короткозамкнутый ротор. При приложении к статорным обмоткам электродвигателя трехфазного напряжения статорными токами, сдвинутыми относительно друг друга на 120 градусов, формируется вращающееся магнитное поле статора. Это поле индуцирует в роторе токи, порождающие собственное поле ротора, которое вращается синхронно с полем статора и образует общий вращающий поток двигателя. В результате взаимодействия токов ротора с магнитным потоком возникают действующие на проводники ротора механические силы и вращающий электромагнитный момент. При этом для создания момента необходимо, чтобы статорное поле вращалось со скоростью выше частоты вращения ротора. Эта разница в скорости вращения называется скольжением.

Скорость ротора асинхронного электродвигателя можно регулировать изменением частоты питающего напряжения, амплитуды питающего напряжения, числа пар полюсов статора.Математически принцип частотного метода регулирования скорости асинхронного двигателя можно выразить формулой:f1 - частота питающего напряженияωo - угловая скорость магнитного потока стартераP – количество пар полюсов.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Структруная схема.Существует два основных типа преобразователей частоты: с непосредственной связью и с промежуточным контуром постоянного тока. В первом случае выходное напряжение синусоидальной формы формируется из участков синусоид преобразуемого входного напряжения. При этом максимальное значение выходной частоты принципиально не может быть равным частоте питающей сети. Частота на выходе преобразователя этого типа обычно лежит в диапазоне от 0 до 25-33 Гц. Первый способ ввиду своей ограниченности был вытеснен преобразователями частоты с промежуточным контуром постоянного тока, выполненные на базе инверторов напряжения.Структурная схема такого преобразователя приведена на рисунке Переменное напряжение сети преобразуется с помощью диодного выпрямителя, а затем сглаживается в промежуточной цепи индуктивно-емкостным фильтром. И, наконец, инвертор, выходной каскад которого обычно выполняется на основе IGBT-модулей, осуществляет обратное преобразование из постоянного тока в переменный, обеспечивая формирование выходного сигнала с необходимыми значениями напряжения и частоты. Наиболее часто в инверторах применяется метод высокочастотной широтно-импульсной модуляции (ШИМ). В этом случае выходной сигнал преобразователя представляет собой последовательность импульсов напряжения постоянной амплитуды и изменяющейся длительности, которая на индуктивной нагрузке, каковой является обмотка статора, формирует токи синусоидальной формы.

Типовая схема силовых каскадов инвертора на базе IGBT.

Типы нагрузок.Требования к электроприводу определяются диапазоном требуемых скоростей и типом нагрузки. Зависимость между скоростью вращения и моментом сопротивления неодинакова для нагрузок разного типа:

Методы управления.В зависимости от характера нагрузки преобразователь частоты обеспечивает различные режимы управления электродвигателем, реализуя ту или иную зависимость между скоростью вращения электродвигателя и выходным напряжением.Закон изменения напряжения зависит от характера момента нагрузки Mс . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:Режим с линейной зависимостью между напряжением и частотой реализуется простейшими преобразователями частоты для обеспечения постоянного момента нагрузки и используется для управления синхронными двигателями или двигателями, подключенными параллельно. Вместе с тем при уменьшении частоты, начиная с некоторого значения, максимальный момент двигателя начинает падать. Для повышения момента на низких частотах в преобразователях предусматривается функция повышения начального значения выходного напряжения, которая используется для компенсации падения момента для нагрузок с постоянным моментом или увеличения начального момента для нагрузок с высоким пусковым моментом, таких, например, как промышленный миксер.

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

www.plastcom.com.ua

Система «преобразователь частоты - асинхронный двигатель»

Наиболее простым, дешевым и надежным электрическим двигателем является асинхронный короткозамкнутый двигатель, поэтому его использование в регулируемом электроприводе представляет особый интерес. Как было установлено, возможности регулирования, аналогичные возможностям изменения напряжения на якоре двигателя постоянного тока с независимым возбуждением, в асинхронном электроприводе обеспечиваются путем изменения частоты напряжения и тока статорной обмотки. Для реализации этих возможностей необходимо осуществлять питание статорной обмотки двигателя от управляемого преобразователя частоты.

Регулирование частоты представляет собой технически более сложную задачу, чем регулирование выпрямленного напряжения, так как, как правило, требует дополнительных ступеней преобразования энергии.

Наибольшее число ступеней преобразования характерно для электромашинных преобразователей частоты. Для регулирования частоты вырабатываемого синхронным генератором напряжения необходимо регулировать его скорость. Для этой цели привод генератора необходимо осуществлять либо по системе Г-Д, либо по системе ТП-Д. Электромашинный преобразователь частоты содержит соответственно два преобразовательных агрегата: асинхронный двигатель, вращающий генератор постоянного тока, и двигатель постоянного тока, вращающий синхронный генератор с регулируемой скоростью. Электропривод с таким преобразователем частоты имеет пять ступеней преобразования энергии, увеличенные примерно в 5 раз массу, габариты и стоимость (по сравнению с нерегулируемым электроприводом), ухудшенный КПД, и его использование экономически нецелесообразно.

На рисунке приведена схема вентильно-электромашинного преобразователя частоты, в котором регулирование скорости синхронного генератора производится по системе ТП-Д. Здесь вместо электромашинного агрегата, вырабатывающего регулируемое напряжение постоянного тока, применен более экономичный тиристорный преобразователь. Однако и в этом случае преобразователь частоты содержит три ступени преобразования энергии, из них две - электромеханического преобразования. Схема непосредственного регулирования скорости по системе ТП-Д проще и дешевле, поэтому применение системы ПЧ-АД, показанной на рисунке, может иметь место только в специальных установках, например в случаях, когда двигатель постоянного тока не может быть применен для привода исполнительного механизма по техническим условиям.

В данной схеме присутствуют два канала управления: канал управления частотой (Uyч), воздействующий на скорость синхронного генератора СГ, и канал управления напряжением, воздействующий на возбуждение СГ(Uун).

Канал регулирования частоты имеет структуру системы ТП-Д (см. рис.) и обладает значительной инерционностью, обусловленной механической инерцией преобразовательного агрегата ПД-СГ. Канал регулирования напряжения также инерционен в связи с наличием электромагнитной инерции цепи возбуждения синхронного генератора. Поэтому как объект управления представленная на рисунке система обладает неблагоприятными свойствами.

Наименьшим числом ступеней преобразования энергии обладают вентильные преобразователи частоты Они содержат ступень преобразования переменного тока в постоянный и ступень инвертирования. Эти две ступени в самостоятельном виде присутствуют в преобразователях частоты со звеном постоянного тока В преобразователе частоты с непосредственной связью функции выпрямления и инвертирования совмещены в реверсивном преобразователе постоянного тока, выпрямленное напряжение или ток которого изменяются с требуемой частотой с помощью системы управления преобразователем. Как следствие, наиболее близкими к системе ТП-Д массогабаритными показателями обладает система ПЧ-АД с преобразователем с непосредственной связью, а система с преобразователями, содержащими ступень постоянного тока, уступает по этим показателям системе ТП-Д. Однако различия по мере совершенствования вентильных преобразователей частоты постепенно сокращаются, и существенные преимущества асинхронного двигателя определяют несомненную перспективность системы ПЧ-АД.

Известно, что вентильные преобразователи частоты могут обладать либо свойствами источника напряжения, либо свойствами источника тока. В первом случае наряду со входом управления частотой Uy.ч преобразователь имеет вход управления напряжением Uун (рис. a). В случае инвертора тока регулирование магнитного потока машины при регулировании частоты осуществляется по входу управления током Uут (рис. б).

Канал управления частотой может осуществлять либо дискретное, либо непрерывное формирование частоты напряжения и тока. При непрерывном формировании синусоидальных напряжений или токов заданной частоты его можно считать практически безынерционным. Канал управления напряжением или током воздействует на тиристорный преобразователь, и его быстродействие может оцениваться быстродействием этого управляемого преобразователя.

www.teh-lib.ru

АСИНХРОННЫЕ ЭЛЕКТРОПРИВОДЫ С ЧАСТОТНЫМ УПРАВЛЕНИЕМ

ЭЛЕКТРОПРИВОДА МЕТАЛЛОРЕЖУЩИХ СТАНКОВ

Серийные станочные регулируемые асинхронные электропри­воды являются преобразователями частоты с промежуточным зве­ном постоянного тока. Указанные электроприводы содержат на входе понижающий сетевой трансформатор и автоматический вы­ключатель, обычно устанавливаемый на первичной стороне транс­форматора. Автоматический выключатель служит для защиты от коротких замыканий и подключения электропривода к сети. Функцию защиты от коротких замыканий в некоторых электро­приводах выполняют быстродействующие плавкие предохранители, а функцию нулевой защиты электропривода — контактор на вхо­де преобразователя.

Частота вращения вспомогательного (холостого хода) асин­хронного двигателя прямо пропорциональна частоте его питания. и

Рис. 70. Характеристики двигателя: а — при изменении частоты и напряжения; б — векторная диаграмма токов

Частота может регулироваться вверх или вниз от номинального Значения, например 50 Гц. При подаче на нагруженный двига­тель номинальных частоты fтом и напряжения UHOм его обмот­

ках статора протекает номинальный ток. Этому соответствует Номинальная величина индуктивного сопротивления обмоток й^ном = 2nf1H0Kb. По Мере снижения частоты одновременно умень­шается Xl. Если оставить напряжение на номинальном значении, Например 220 В, то по закону Ома начнет расти ток через обмот­ку статора, что может привести к ее перегоранию. Поэтому с уменьшением fi надо уменьшать напряжение на статоре U (рис. 70,а). Уменьшение напряжения U =

Если пренебречь падением напряжения на активном сопротив­лении статора, то напряжение питания двигателя U можно счи­тать равным ЭДС намагничивания двигателя Е, которая пропор­циональна потоку Ф двигателя, числу витков обмотки и частоте напряжения на статоре. Так, при снижении напряжения пропор­ционально частоте величина потока остается близкой к номи­нальной. Момент двигателя пропорционален произведению тока на поток. Как известно, регулирование частоты вращения элек­трических двигателей вниз от номинального значения может осу­ществляться с постоянным (номинальным) моментом. Это обычно подразумевает работу с номинальным потоком и с постоянным (номинальным) током, т. е. при поддержании неизменным отношения U/fі регулирование производится с постоянными мо­ментом и перегрузочной способностью. Требуемые зависимости напряжения от частоты при регулировании частоты вращения на­зывают законами регулирования. С увеличением диапазона регу­лирования частоты'вращения вниз от номинальной пренебрежение падением напряжения на сопротивлении статора приводит к все большему снижению критического момента по сравнению с номинадьным. Существенная разница появляется уже при диапазоне регулирования около 1 : 3. Существуют различные способы ком­пенсации падения напряжения на сопротивлении статора.

При компенсации падения напряжения в разомкнутой системе регулирования имеется следующее ограничение. При возрастании нагрузки от нагрузки холостого хода До номинальной увеличива­ется падение напряжения на сопротивлении статора, пропорцио­нальное току. Поэтому при постоянном напряжении питания ЭДС намагничивания и соответственно поток на холостом ходу стано­вятся больше. При существенной компенсации падения напря­жения на низких частотах происходит повышение потока холо­стого хода и увеличение тока намагничивания. Последнее при-, водит к значительным потерям и перегреву двигателя.

Избежать указанного недостатка удается в замкнутых систе­мах регулирования с обратными связями по параметрам", реаги­рующим на изменение нагрузки. Электроприводы с небольшим диапазоном регулирования частоты вращения содержат положи­тельную обратную связь по току двигателя, воздействующую на канал регулирования напряжения. При увеличении нагрузки воз­растает ток двигателя, в результате становятся больше сигнал управления (Uy — Us + Uoc, где U0c = KocI) и напряжение питания двигателя. Указанное увеличение напряжения питания двигателя компенсирует падение напряжения на сопротивлении статора. Данная система регулирования обеспечивает сохранение критиче­ского момента двигателя на уровне номинального критического. Одновременно привод обычно содержит отрицательную обратную связь по напряжению выпрямителя, которая стабилизирует на­пряжение на входе инвертора при колебании напряжения сети и компенсирует падение напряжения во внутреннем сопротивлении преобразователя частоты.

Развитием описанной выше системы регулирования является САР с, так называемой обратной связью по ЭДС. В данном слу­чае из сигнала, пропорционального напряжению двигателя, вы­читается сигнал, пропорциональный произведению тока на актив­ное сопротивление статора, т. е. вычитаемое представляет собой падение напряжения на указанном сопротивлении. Результирую­щий сигнал отрицательной обратной связи пропорционален внут­ренней ЭДС двигателя, он сравнивается с задающим сигналом, пропорциональным частоте. САР поддерживает постоянство отно­шения упомянутой ЭДС к частоте.

В технических требованиях к электроприводам оговаривается допустимое относительное отклонение частоты вращения (отно­шение абсолютного падения Ап к частоте вращения холостого хода пс). В описанной выше системе регулирования поддержива­ется постоянным абсолютное отклонение (падение) частоты вра­щения, а относительное падение частоты вращения увеличивается по мере снижения заданной частоты вращения и может превысить допустимую величину. Дальнейшее уменьшение относительного •отклонения частоты вращения достигается в САР с воздействием на канал регулирования — частоту питания. Так, в системе с обратной связью по току при увеличении нагрузки возрастает управляющий сигнал по каналу частоты, повышается частота пи­тания двигателя (двигатель переходит на более «высокую» меха­ническую характеристику). Поэтому при том же моменте нагрузки повышается частота вращения и снижается ее отклонение относи­тельно точки холостого хода.

В асинхронных электроприводах с более широким диапазоном регулирования применяется обратная связь по частоте вращения. Указанная обратная связь требует установки на двигателе тахо­генератора или какого-либо другого типа датчика. Отрицательная обратная связь по частоте вращения может воздействовать на канал частоты и напряжения. При увеличении нагрузки перво­начально падает частота вращения, увеличивается напряжение управления. Воздействие на канал напряжения преобразователя обеспечивает поддержание постоянной перегрузочной способности (и косвенно величины потока). Воздействие на канал частоты инвертора обеспечивает уменьшение нестабильности (отклонения) частоты вращения благодаря повышению частоты питания дви­гателя.

Качественную работу электроприводов с более широким диа­пазоном регулирования обеспечивают системы частотно-токового управления. В этих системах за счет обратной связи по току уп­равляемый выпрямитель (или инвертор с ШИР или ШИМ) ста­новится регулятором тока, двигателю задается не напряжение, а ток. Преимущество систем частотно-токового управления состоит в том, что выходной параметр регулятора (ток статора) не зави­сит от частоты питания двигателя, системе легче реагировать на изменение нагрузки, так как момент пропорционален абсолютному скольжению, р = [пс—п)/«сном, которое измерить проще. Такая си­стема работает следующим образом.

В результате вычитания сигнала обратной связи по частоте вращения из задающего сигнала определяется напряжение, про­порциональное абсолютному скольжению. Сигнал абсолютного Скольжения поступает на функциональный преобразователь, ко­торый задает величину тока по одному из законов, обеспечиваю­щих или минимальный ток, или минимальные потери двигателя. Выходной сигнал функционального преобразователя после срав­нения с сигналом обратной связи по току управляет выпрямителем. Частота питания двигателя задается в виде алгебраической сум­мы частоты тока ротора и частоты вращения. Далее частоту тока ротора будем называть частотой ротора. САР по частотно-токо­вому принципу применяется, как правило, в тиристорных элек­троприводах с инвертором тока.

В приводах подачи некоторых станков с ЧПУ используют высокодинамич­ные асинхронные электроприводы с векторным управлением. Их появление свя­зано с тем, что традиционные системы частотного регулирования перестали удовлетворять повышенным требованиям к качеству работы электроприводов и расширенному диапазону регулирования частоты вращения.

Необходимо остановиться на новом методе построения САР частотных электроприводов, получившем название векторного. Сущность метода заключает­ся в том, чтобы систему регулирования двигателя переменного тока сделать по­хожей на систему регулирования двигателя постоянного тока, у которого опре­деляющими величинами ЯВЛЯЮТСЯ ТОК в цепи якоря /я и ток в цепи обмотки возбуждения 1 в. В системе регулирования привода формируются сигналы: Iq, пропорциональный моменту двигателя (а это аналог 1Я) ■ и Id, задающий вели­чину магнитного потока двигателя (который является аналогом /в).

Почему появилась необходимость в разработке векторной САР? Дело в том, что в отличие от двигателей постоянного тока напряжение и ток двигателей пе­ременного тока изменяются по синусоидальной кривой. Поэтому даже при по­стоянной действующей величине напряжения или тока их мгновенные значения меняются. При построении САР иметь дело с синусоидально изменяющимися переменными очень трудно. Поэтому в обычных частотных системах регулиро­вались только действующие величины переменных и это не позволяло созда­вать быстродействующие асинхронные электроприводы.

Зависимости, характеризующие реальный трехфазный двигатель, преобра­зуются к условному двухфазному двигателю. Фазы этого двигателя расположе­ны под углом 90° друг относительно друга. Токи и напряжения этих двух фаз принимаются за проекции обобщенных параметров статора или ротора двига­теля. Эти обобщенные напряжения и токи, построенные в прямоугольной сис­теме координат, оси которой расположены (ориентированы) вдоль двух фаз статора двигателя, называются векторами. Теперь после преобразования к двух­фазному двигателю токи и напряжения в векторной форме имеют такой же характер изменения, как у двигателей постоянного тока. Данная система коор­динат является неподвижной. Для построения САР удобно иметь дело с векто­рами, преобразованными из неподвижной системы координат в подвижную. Одну ось координат, называемую действительной, обозначают d, другую, на­зываемую мнимой, обозначают q (рис. 70,6). Ось d располагают, как правило, вдоль вектора потока ротора. В этом случае оказывается, что поток двигателя можно поддерживать постоянным за счет регулирования проекции тока на ось d. Так как момент двигателя пропорционален произведению потока на ток, то при условии постоянства потока момент пропорционален проекции тока на ось q, т. е. для стабилизации момента можно регулировать составляющую /8. Теперь после двух преобразований САР можно строить по аналогии с система­ми электроприводов постоянного тока.

САР с векторным управлением дают возможность управлять мгновенными значениями напряжений, токов и потока двигателя. Пример такой САР с час­тотно-токовым управлением будет описан при рассмотрении электропривода типа Размер 2М-5-2.

Регулирование частоты вращения асинхронного двигателя, так же как для двигателя постоянного тока, выполняется двухзонным. До этого шла речь о регулировании частоты вращения вниз от номинальной с постоянным моментом. Во второй зоце происходит регулирование частоты вращения вверх от номиналь­ной. Для регулирования в режима постоянной мощности с постоянной перегру­зочной способностью теоретически требуется одновременно с увеличением частоты

изменять напряжение на статоре по зависимости UIUH0H = y fjfiaou • Однако для ряда приводов с диапазоном регулирования вверх 2:1 принято U— const. При этом режим постоянства мощности обеспечивается некоторым снижением величины перегрузочной способности относительно номинальной. Ограничение максимального напряжения питания двигателя позволяет выбрать элементы пре­образователя на более низкое напряжение и получить лучшие массогабаритные показатели.

Электроприводы с частотным регулированием имеют более благоприятные переходные процессы (пуск, торможение и реверс) по сравнению с нерегулируе­мыми асинхронными электроприводами. Как известно, пусковой момент паспорт­ной механической характеристики двигателя меньше критического. Пусковой ток превышает номинальный в 5—8 раз, а ток, соответствующий критическому мо­менту, в 3—3,5 раза. В частотно-регулируемых электроприводах обеспечивается частотный пуск, который заключается в следующем. Электропривод включается на заданную частоту не сразу, а предварительно на частоту 1—5 Гц. Началь­ная частота выбирается таким образом, что точка критического момента соответ­ствует нулевой частоте вращения, т. е. момент при пуске равен критическому. Далее частота питания плавно нарастает до заданного значения с таким темпом, чтобы двигатель разгонялся по линии критических моментов. Соответственно увеличивается напряжение. Так как двигатель все время пуска работает с кри­тическим моментом, то сокращается время пуска и пуск происходит с меньшим током, в результате чего сокращаются потери. двигателя за время пуска. Пре­образователь частоты обеспечивает также бесконтактный реверс. Не требуется переключения в силовой схеме контакторов, а изменяется порядок переключения силовых управляемых ключей благодаря соответствующему изменению работы системы управления инвертором.

Ряд электроприводов обеспечивает частотное рекуперативное торможение, во время которого энергия торможения двигателя передается в сеть. Другие типы электроприводов не имеют возврата (рекуперации) энергии торможения, но также обеспечивают эффективное торможение. При торможении одновре­менно с частотой плавно понижается напряжение.

Рассмотрим последний случай. Во время снижения частоты как при регули­ровании вниз, так и при торможении, в конденсатор фильтра через вентили об­ратного моста поступает энергия, отдаваемая двигателем. В результате повы­шается напряжение на конденсаторе фильтра, что опасно для элементов инвер­тора. Аналогичные процессы происходят при сбросе (уменьшении) нагрузки двигателя или отключении инвертора в результате действия защиты. Для пред­отвращения недопустимого повышения напряжения путем разряда энергии кон­денсатора служит цепочка из балластного резистора и транзисторного (или тири­сторного) ключа, включаемого при повышении напряжения на конденсаторе сверх допустимой величины. Требуемый темп частотного пуска или торможения может регулироваться за счет обратных связей или определяться задатчиком интенсивности.

Кривая выходного напряжения ряда преобразователей имеет прямоугольно­ступенчатую форму, а асинхронные двигатели предназначены для питания синусоидальным напряжением. Питание двигателя прямоугольно-ступенчатым напряжением вызывает дополнительные потери и неравномерность вращения. Дополнительные потери двигателя и неравномерность вращения зависят от типа преобразователя частоты. Инверторы с формированием выходного напряжения по способу однократной коммутации вызывают заметные дополнительные поте­ри, а на низких частотах — неравномерность вращения. Дополнительные потери вызывают ограничение допустимого по нагреву момента двигателя. Из-за существенной неравномерности вращения данный тип электропривода не приме­няют в станочных приводах при диапазонах регулирования частоты вращения вниз от номинальной больше 1 : (5-НІ0). Благоприятную форму выходного на­пряжения имеют инверторы с синусоидальной ШИМ. При соответствующем вы­боре несущей частоты ограничиваются дополнительные потери в двигателе и не­равномерность его вращения.

Асинхронный короткозамкнутый двигатель имеет склонность к. колебаниям частоты вращения на средних частотах. При питании двигателя от преобразова­теля частоты в разомкнутых системах электропривода это явление усиливается. Значительное влияние на величину колебаний двигателя имеют параметры сило­вого фильтра на выходе выпрямителя. Для подавления колебаний в электропри­водах применяются обратные связи.

Для механизмов прерывистого перемещения может быть использован шаго­вый режим асинхронного двигателя. Этот режим осуществляется при питании двигателя от инвертора, работающего на низкой частоте. Как известно, асин­хронный двигатель на частотах ниже 5 Гц входит в шаговый режим из-за пря­моугольно-ступенчатой формы тока. Преобразователь частоты состоит из вы­прямителя и инвертора тока. Путем разного включения силовых ключей инвер­тора осуществляются' различные комбинации подключения фаз двигателя к промежуточному звену постоянного тока. При этом получаются разнообразные углы поворота двигателя. Для обеспечения требуемого угла поворота выби­рается двигатель с определенным числом пар полюсов.

Описанные выше вопросы характерны для всех электроприводов с частот­ным управлением, устанавливаемых на металлообрабатывающих станках. Рас­смотрим работу серийных асинхронных электроприводов, предназначенных для трехфазной сети напряжением 380 В и частотой 50 Гц.

Цилиндрический редуктор - простое и эффективное решение для ступенчатого снижения числа оборотов и повышения крутящего момента.

Разборка и сборка электроприводов серии ПМСМ (1—3-й ти­пы размеров). При разборке следует освободить выходной конец вала агрегата от шкива или другого соединительного устройства; снять щеткодержатель 7 (см. рис. 55, а) …

Наладка выпрямителей и их систем управления, входящих в преобразователи частоты, проводится по той же методике, как и в случае электроприводов постоянного тока. При наладке инвер­торов должны применяться высокочастотные осциллографы. Для …

msd.com.ua

Скалярное управление частотным преобразователем

Наиболее известный метод  экономии энергии – сокращение частоты вращения электродвигателя переменного тока. Поскольку мощность пропорциональна кубу скорости вращения вала, то небольшое снижение скорости может привести к значительной экономии электричества. Насколько это актуально для производства, понимает каждый. Но как этого достичь? На этот и другие вопросы мы ответим, но прежде, поговорим о видах управления асинхронными двигателями.

Электрический привод переменного тока – это электромеханическая система, которая служит основой большинству технологических процессов. Важная роль в ней принадлежит преобразователю частоты (ПЧ), отвечающему заглавную «игру главной скрипки дуэта»–асинхронного двигателя (АД).

Немного элементарной физики

Со школьной скамьи мы имеем ясное представление о том, что напряжение – это разность потенциалов между двумя точками, а частота – это величина, равная количеству периодов, которые ток успевает пройти буквально за секунду.

В рамках технологического процесса часто приходится изменять рабочие параметры сети. Для этой цели существуют преобразователи частоты: скалярный и векторный. Почему их так называют? Начнём с того, что особенные черты каждого типа становятся понятными из их названия. Вспомним основы элементарной физики и позволим себе называть ПЧ для упрощения короче. «Векторник» имеет определённое направление и подчиняется правилам векторов. «Скалярник» ничего этого не имеет, поэтому алгоритм метода управления им, естественно, очень простой. С названиями, кажется, определились. Теперь о том, как различные физические величины из математических формул связаны между собой.

Помните, что как только скорость уменьшается, вращающий момент увеличивается и наоборот? Значит, чем больше вращение ротора, тем больший поток пойдет через статор, и, следовательно,будет наводиться большее напряжение.

Тоже самое лежит в принципе действия в рассматриваемых нами системах, только в«скалярнике» управляется магнитное поле статора, а в «векторнике»играет роль взаимодействие магнитных полей статора и ротора.В последнем случае технология позволяет улучшать технические параметры работы двигательной установки.

Технические различия преобразователей

Отличий существует много, выделим самые основные, и без научной паутины слов. У скалярного (бездатчикового) частотника зависимость U/F – линейная и диапазон скоростного регулирования довольно небольшой. Кстати сказать, поэтому на низких частотах недостаёт напряжения для поддержания крутящего момента, и приходится порой настраивать вольт-частотную характеристику (ВЧХ) под рабочие условия, то же самое происходит при максимальной частоте выше 50 Гц.

При вращении вала в широком скоростном и низкочастотном диапазоне, а также выполнении требований авторегулирования момента, используют метод векторного управления с обратной связью. В этом проявляется еще одно различие: у «скалярника» обычно такой обратной связи нет.

Какие же выбрать ЧП? В применении того или другого устройства, главным образом, руководствуются сферой использования электрического привода. Однако в особых случаях выбор типа преобразователя частоты становится безвариантным. Во-первых: есть явная, заметная разница в цене (скалярные стоят намного дешевле, нет надобности в дорогостоящих вычислительных ядрах). Поэтому удешевление производства порой перевешивает в принятии решения по выбору. Во-вторых: есть сферы применения, в которых возможно только их использование, к примеру, в конвейерных линиях, где несколько электродвигателей синхронно управляются от одного частотно-регулируемого привода (ЧРП).

Скалярный метод

Асинхронный электропривод со скалярным управлением скоростью (т. е. по ВЧХ) так и остаётся по сегодняшнее время самым распространенным. В основе метода лежит то, что скорость двигателя является функцией выходной частоты.

Скалярное управление двигателями – оптимальный выбор для случаев, когда нет переменной нагрузки, и в хорошей динамике нет также потребности. Для работы «скалярника» не требуются какие-либо датчики. При использовании рассматриваемого метода, нет необходимости в дорогостоящем цифровом процессоре, как в случае с векторным управлением.

Метод часто применяется для автоуправления насосными, вентиляторными, компрессорными и иными агрегатами.Здесь требуется, чтобы поддерживалась или скорость вращения вала движка с применением датчика, или иной заданный показатель (к примеру, температура жидкости, контролируемая по соответствующему прибору слежения).

При скалярном управлении частотно-амплитудное изменение напряжения питания определяется по формуле U/fn = const. Это позволяет обеспечить постоянный магнитный поток в двигателе. Способ достаточно простой, легко реализуется, но не без некоторых существенных недостатков:

  • не представляется возможным одновременное регулирование моментом и скоростью, поэтому выбирается та величина, которая с технологической точки зрения самая значимая;
  • узкий диапазон скоростного регулирования и низкий момент на малых скоростях;
  • плохая работа с динамически изменяющейся нагрузкой.

А что собой представляет векторный метод?

Векторный метод

Он возник в процессе усовершенствования, и применяется при требовании реализовать максимальное быстродействие, регулирование в широком скоростном диапазоне и управляемость момента на валу.

В новейших моделях электрических приводов в систему управления (СУ) по этому типу внедряется математическая модель двигателя, которая способна рассчитать момент движка и скорость вращения вала. При этом требуется лишь установка датчиков тока фаз статора.

Частотные преобразователи с векторным управлением сегодня обладают достаточным числом достоинств:

  • высокая точность;
  • без рывков, плавное вращение АД;
  • широкий диапазон регулирования;
  • быстрое реагирование на изменение нагрузки;
  • обеспечение рабочего режима двигателя, при коем уменьшаются потери на нагрев и намагничивание, а это ведёт к заветному увеличению КПД!

Плюсы, безусловно, очевидны, но метод векторного управления не лишён и недостатков, таких, как вычислительная многосложность и потребность в знании технических показателей АД. Помимо этого, наблюдаются большие, чем  у «скалярника», амплитуды скоростных колебаний при постоянной нагрузке. Главная задача при изготовлении частотного преобразователя(«векторника») – обеспечение высокого момента при небольшой скорости вращения.

Схема векторного  СУ с блоком широтно-импульсной модуляции (АИН ШИМ) выглядит примерно так:

На  изображённой схеме контролируемым объектом является асинхронный двигатель, имеющий связь с датчиком (ДС) на валу. Изображённые блоки – это в действительности звенья цепи СУ, реализуемой на контроллере. Блок БЗП задаёт значения переменных. Логические блоки (БРП) и (БВП) регулируют и вычисляют переменные уравнения. Сам контроллер и другая механическая часть системы находится в электрическом шкафу.

Вариант с частотным микроконтроллером

Частотный преобразователь тока/напряжения предназначен для плавного регулирования основных величин, а также других показателей работы оборудования. Он функционирует как «скалярник» и «векторник» одновременно, используя математические модели, запрограммированные во встроенном микроконтроллере. Последний монтируется в специальный щиток и является одним из узлов информационной сети системы автоматизации.

Блочный контроллер/преобразователь частоты последнее слово техники, в схеме с ними используют дросселя и ЕМС фильтры, уменьшающие интенсивность входных помех. Надо отметить, что за рубежом данному вопросу уделяется особое внимание.В отечественной же практике использование ЕМС фильтров пока остаётся слабым звеном, так как даже не существует толковой нормативной базы. Сами фильтры у нас применяются чаще там, где они не нужны, и где они действительно необходимы, про них почему-то забывают.

Заключение

Дело в том, что электродвигателю в обычном режиме работы от сети свойственно иметь стандартные параметры, это не всегда приемлемо. Устраняется сей факт путём ввода различных редукторных механизмов для снижения частоты до необходимой. На сегодня сформировались две СУ: бездатчиковая и датчиковая система с обратной связью. Их основное отличие в точности контроля. Наиболее точная, конечно, вторая.

Существующие рамки расширяются с помощью использования разных современных СУ АД, обеспечивающих повышенное качество регулирования, высокую перегрузочную способность. Для рентабельного производства, продолжительности срока службы оборудования и экономичного расхода энергии эти факторы имеют большое значение.

Асинхронный управляемый электропривод. Скалярное и векторное управление

Watch this video on YouTube

chistotnik.ru


Смотрите также