Датчики в системах электропривода. Датчики времени в электроприводах


Датчики в системах электропривода

ИНЖИНИРИНГ ЗЛЕКТРОПРИВОДОВ

Производим и продаем электроприводы ЭТУ, ЭПУ для двигателей постоянного тока, тел./email +38 050 4571330 / [email protected] электропривод постоянного тока 25-50 Ампер

Привод ЭПУ 25А с дросселем - 5500грн

Датчики скорости широко применяются в системах комплектных электро­приводов постоянного и переменного тока. Применявшиеся ранее аналоговые тахогенераторы заменяют сегодня более точные, надежные и помехоустойчи­вые цифровые датчики — абсолютные и инкрементальные энкодеры, а также оптоэлектрические пристраиваемые датчики для регистрации отрезков пути, углов поворота или числа оборотов — резольверы. Эти датчики производят как российская (СКВ ИС), так и зарубежные компании (Heidenhine, Leine&Linde, Siemens, Hubner, Omron, Schneider Electric, Avtron и др.). Применяют их вме­сте с системами числового программного управления (ЧПУ), приводами и устройствами определения положения. При использовании инкременталь­ных датчиков после каждого отключения сети необходимо проводить проце­дуру реферирования (вывода в ноль) промышленного механизма, так как после отключения питания его движения не регистрируются. Абсолютные датчики, напротив, регистрируют эти движения механически, и после вклю­чения питания показывают действительное значение, т. е. процедура рефе­рирования здесь не нужна. Датчики выпускаются на напряжение питание 5 В DC или на выбор на напряжение от 10 до 30 В DC. Большинство систем управления передают напряжение питания датчика через сигнальный кабель. Датчики на 10... 30 В ОС позволяют использовать длинные кабели. Инкремен­тальные датчики работают по принципу оптоэлектронной развертки дели­тельных дисков в проходящем луче. Источником света при этом является све - тодиод. Модуляция светотени, возникающая при вращающемся вале датчика, регистрируется фотоэлементами. Через подходящее распределение штрихово­го образца на связанном с валом делительном диске и неподвижной диафраг­ме фотоэлементы выдают два путевых сигнала — А и В, смещенных относи­тельно друг друга на угол 90°, а также нулевой сигнал R. Электроника датчика усиливает эти сигналы и преобразовывает их в выходные сигналы требуемого вида:

Дифференциальные сигналы (TTL) и интерфейс передачи RS422;

Аналоговые сигналы sin/cos;

Сигналы HTL (High Voltage Transistor Logic).

Технические характеристики датчика

Датчик с TTL (RS422)

Датчик с sin/cos

Датчик с HTL

Двухи. мпульсный датчик с TTL (RS422)

Напряжение питания

Предельная частота: -3 дБ -6 дБ

5 В DC±�% или 10...30 В DC

5 В DC + 10 %

> 180 кГц

> 450 кГц

10...30 В DC

5 В DC±5 %

Максималь­ная частота считывания

300 кГц

300 кГц

Импульс 1:160 кГц Импульс 2:1 МГц

Уровень сигнала

TTL (RS422)

Синусоидаль­ный

HTL UH> 21 В при 1н = 20 мА и 24 В

UL > 21 Впри IL = 20 мА и 24 В

TTL (RS422)

Время пере­ключения (10...90%)

Время подъе­ма/спада tjt_ < 50 не

Время подъе­ма/спада tjt_ < 200 не

Время подъема/ спада tjt_ < 100 не

Фазовое поло­жение сигна­ла А относи­тельно сигна­ла В

90 эл. град.

(90+10) эл. град.

90 эл. град.

90 эл. град.

Максималь­ная длина ка­беля, идуще­го к следящей электронике

100 м

150 м

100 м

100 м (до 500 кГц) 50 м (до 1 МГц)

Максималь­ное разреше­ние

5000 имп/об

2500 имп/об

2500 имп/об

Импульс 1 — 1024 имп/об Импульс 2 — 9000 имп/об

Точность, угл. с

+18°х3600/число импульсов

Импульс 1—+63 Импульс 2—±12

Максималь­ное число оборотов механических

12 000 мин"'

Момент тре­ния при 20 °С Момент тро - гания при 20 °С

< 0,01 Н • м <0,01 Н м

Окончание табл. 3.5

Технические характеристики датчика

Датчик с TTL (RS422)

Датчик с sin/cos

Датчик с HTL

Двухимпульсный датчик с TTL (RS422)

Максималь­ное ускорение

> 105 рад/с2

Момент инер­ции ротора

1,45 х 10"6 кг ■ М"

20х 10~6 кг ■ м2

Степень защи­ты по DIN EN 60529 (ІЕС 60529)

ІР67 на корпусе ІР64 на входе вала

ЕМУ

Проверено на электромагнитную совместимость (89/336/EWG)

Масса

= 0,25 кг

= 0,7 кг

В датчиках с интерфейсом RS422 (TTL) за счет обработки передних и задних фронтов сигналов можно увеличить разрешение в четыре раза. Для достижения более высокого разрешения в вышестоящую систему управле­ния интерполируют сигналы синусных датчиков. Датчики с интерфейсом HTL хорошо подходят для использования с модулями счетчиков программируе­мых контроллеров.

Датчики абсолютного значения (угловые кодирующие устройства) основа­ны на принципе считывания, как и инкрементальные датчики, но обладают большим числом дорожек. Например, при 13 импульсных дорожках в одно - оборотных датчиках, кодируются 213 = 8192 шагов. Используемый одношаго - вый код (код Грея) позволяет обеспечить отсутствие ошибок считывания. После включения промышленного механизма значение позиции сразу же перено­сится в систему управления. Процедура реферирования не производится. Пе­редача данных от датчика в систему управления происходит либо через синх­ронный последовательный интерфейс SSI, EnDat или же через Profibus-DP.

Сравнительные технические характеристики инкрементальных и абсолют­ных датчиков с различными интерфейсами передачи данных приведены в табл. 3.5, 3.6. Для примера рассмотрены датчики Simodrive Sensors производства компании Siemens. Однооборотные датчики имеют определенное разреше­ние, например 8192. Каждой позиции датчика приписано определенное ко­довое слово. После 360° значения позиций снова повторяются. Многооборот­ные датчики в дополнение к значению абсолютного положения в течение одного оборота регистрируют определенное значение импульсов. Это обеспе­чивается за счет считывания с других кодирующих дисков, связанных с валом датчика через шестерни передачи. При обработке 12 следующих импульсных дорожек дополнительно могут кодироваться 212 = 4096 оборотов.

Инкрементальные и абсолютные датчики могут иметь различное конструк­тивное исполнение. Различают датчики с цельным и полым валом. Датчики с цельным валом сопрягаются с валом вращения двигателя/механизма с помо­щью специальных пружинных, сильфонных или пластинчатых муфт. Датчики с полым валом насаживаются непосредственно на вал двигателя/механизма.

Таблица 3.6

Технические характеристики датчика

Датчик абсолютных значений с синхронным последовательным интерфейсом SSI

Датчик абсолютных значений с EnDat

Датчик абсолютных значений с Profibus-DP (EN 50170)

Рабочее напряжение на датчике

10...30 В DC

5 В DC± 10%

10...30 В DC

Потребление тока

~ 180 мА — многооборотный = 120 мА — однооборотный

= 250- мА — многооборотный = 180 мА — однооборотный

300... 100 мА (3,5 Вт)

Тактовый вход

Приемник разностных кабелей по стандарту EIA RS485

Выход данных

Ведущий элемент разностных кабелей по стандарту EIA RS485

Допустимое число оборотов электрических

1500 мин ' при точности ±1 бит

Максимальное число обо­ротов механических

12000 мин 1 — однооборотный 6000 мин"' — многооборотный

12000 мин"' — однооборотный 10000 мин"' —многооборотный

12000 мин ' —однооборотный 6000 мин"' — многооборотный

Максимальная длина кабе­ля, идущего к следящей электронике

50 м — до 1 МГц 100 м - до 300 кГц 400 м - 100 кГц

50 м - до 1 М Гц 150 м - до 300 кГц

100 м - до 12 Мбит/с 200 м — до 1,5 Мбит/с 1200 м - до 93,75 Кбит/с

Максимальное число участников

_

99

Разрешение

12 бит — однооборотный (4096 шагов)

24 бит — многооборотный (4096 x 4096 шагов)

13 бит — однооборотный (8192 шагов)

25 бит — многооборотный (4096x8192 шагов)

12 бит — однооборотный (4096 шагов)

24 бит — многооборотный (4096x4096 шагов)

Длина телеграммы

13 бит — однооборотный, без четности

25 бит — многооборотный, без четности

Соответственно спецификации EnDat

Инкрементальный импульс

512 имп/об

Окончание табл. 3.6

Технические характеристики датчика

Датчик абсолютных значений с синхронным последовательным интерфейсом SSI

Датчик абсолютных значений с EnDat

Датчик абсолютных значений с Profibus-DP (EN 50170)

Вид кода: считывания переноса

Gray Gray

Gray

Двоичный

Gray

Двоичный

Нагрузка шины

= 20 мкс на датчик при 12 Мбит/с

Время цикла

667 мкс

Точность

+ 1/2 LSB

±60"

±1/2 LSB

EMV

Проверено на электромагнитную совместимость (DIN EN 50081 и EN 50082)

Максимальное угловое ускорение

105 рад/с2

Момент инерции: около синхронизирующе­го фланца

Около клеммного фланца

2 х 106 кг - м2 3x10'' кг■ м2

Степеньзащиты по DIN EN 60529 (ІЕС 60259) с соединенным валом/без соединения

IP67/1P64

Масса однооборотного/ многооборотного, около

0,2/0,3 кг

0,35/0,35 га-

0,5/0,7 кг

Для тяжелых условий эксплуатации применяются датчики с усиленными под­шипниковыми узлами и повышенной до IP68 степенью зашиты. Для контроля состояния датчиков предлагаются специальные системы диагностики, напри­мер, система ADS (Advanced Diagnostic System), разработанная компанией Leine&Linde. Эта система позволяет отслеживать состояние всех ключевых уз­лов датчика и тем самым предупреждать возможную неисправность датчика задолго до ее проявления.

Выбирая датчик положения, прежде всего необходимо правильно опреде­лить приоритетные критерии: разрешение и точность; линейность; скорость измеряемого процесса; условия применения и класс защиты; надежность; га­баритные размеры; стоимость. Необходимо также учесть, что датчики могут определять абсолютное или относительное положение контролируемого объекта. Абсолютный датчик вырабатывает сигнал, являющийся функцией положения одной из его частей, связанных с подвижным объектом, а изменения этого сигнала отражают перемещение. Это резистивные (потенциометрические) дат­чики, индуктивные датчики с подвижным сердечником, емкостные датчики с подвижными обкладками и цифровые кодовые датчики абсолютных значе­ний. Относительный датчик генерирует единичный импульс на каждом эле­ментарном перемещении, а положение датчика определяется суммой импуль­сов, зависящей от направления перемещения. Достоинством таких датчиков по сравнению с абсолютными являются простота и низкая стоимость, а недо­статком — необходимость периодической калибровки и дальнейшей микро­процессорной обработки данных.

Крановые двигатели. Общая характеристика

Характерной особенностью электромоторов МТН является фазный ротор. Это значит, что управляющее напряжение подается на ротор двигателя. Скорость и пусковой момент регулируется резисторами пусковой регулировки в цепи ротора.

Технико-экономическое обоснование проектных решений

С самого начала постановки и разработки методологии проектирования в учебном процессе раздел технико-экономического обоснования (ТЭО) яв­лялся непременной составной частью дипломного проектирования. В первом курсе по электрической передаче и распределению механичес­кой …

Информационные сети и их компоненты

Информационные сети служат для передачи данных на всех уровнях авто­матизации производства, включая сети полевого и заводского уровней, ком­плекс сетевых компонентов, программные и аппаратные средства для постро­ения, конфигурации и эксплуатации. Некоторые …

msd.com.ua

Датчики времени, скорости, тока и положения

Количество просмотров публикации Датчики времени, скорости, тока и положения - 150

Бесконтактные логические элементы

Датчики времени, скорости, тока и положения

Вопросы

Средства управления разомкнутых электроприводов

Лекция 4

Для управления электроприводом, в т.ч. и разомкнутым, необходима информация о текущих значениях скорости, тока, момента и координат, а также о времени. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название датчиков.

Датчики времени. При построении схем управления ЭП по принципу времени в качестве датчиков используются различные релœе времени - электромагнитые, моторные, электронные и механические. Рассмотрим их принцип действия и основные технические характеристики.

Электромагнитное релœе времени (рис. 1) состоит из неподвижной части магнитопровода 2, на котором установлена катушка 1; подвижной части магнитной системы - якоря 6 с контактами 8 и 9. При отсутствии напряжения на катушке якорь 6 с помощью пружины 4 удерживается в поднятом положении.

Особенностью конструкции релœе времени является наличие в магнитопроводе 2 массивной медной трубки 3 (гильзы), которая обеспечивает выдержку времени при отключении катушки релœе источника питания. Рассмотрим данный процесс подробнее.

Релœе времени включается, как и обычное электромагнитное релœе подачей напряжения на катушку 1 при замыкании контакта 10. При этом якорь 6, притягиваясь к сердечнику, осуществляет без выдержки времени переключение контактов 8 и 9. Необходимая выдержи времени обеспечивается замедлением возврата якоря в исходное положение, так как при снятии с катушки напряжения спадающий магнитный поток создает в гильзе 3 вихревые токи, которые (правило Ленца) своим магнитным потоком поддерживают основной поток. Другими словами, наличие гильзы замедляет (демпфирует) спад магнитного потока, а значит, и перемещение якоря и контактной системы в исходное (отключенное) положение. Таким образом обеспечивается выдержка времени при размыкании замыкающего контакта и замыкании размыкающего контакта (см. рис. 1, б).

Выдержка времени может регулироваться ступенчато за счёт латунной немагнитной прокладки 7 определœенной толщины, устанавливаемой на якоре 6 (уменьшение толщины прокладки вызывает увеличение выдержки релœе и наоборот), или плавно за счёт изменения натяжения пружины 4 с помощью гайки 5.

Рисунок 1 – Электромагнитное релœе времени (а), контакт замыкающийся и размыкающийся с замедлением при возврате (б)

Выдержку времени электромагнитного релœе можно обеспечить без установки гильзы 3, закорачивая катушку после отключения ее от сети. В этом случае замкнутый контур, образованный катушкой и замыкающим ее контактом 11, будет играть роль электромагнитного демпфера. При этом выдержка времени в данном случае получается меньше, чем при использовании гильзы. Релœе серии РЭВ, обеспечивают выдержку времени от 0,25 до 5,5 с.

Моторное (электромеханическое) релœе времени состоит из специального низкоскоростного двигателя и редуктора с большим передаточным числом, на выходном валу которого имеется рычаг, начальное положение которого устанавливается по шкале уставок времени. Рычаг управляет работой вспомогательных контактов, которыми включается выходное электромагнитное релœе. Работает моторное релœе времени следующим образом. Начало отсчета времени соответствует подаче напряжения на двигатель, который, включившись, начинает вращаться и медленно поворачивать рычаг на валу редуктора. Через заданное время, определяемое начальным положением, рычаг доходит до вспомогательных контактов и замыкает их, что приводит к включению выходного релœе, ĸᴏᴛᴏᴩᴏᴇ одним из своих контактов отключает двигатель, завершая отсчет выдержки времени.

В электронных релœе времени (рис. 2) обычно используются различные полупроводниковые элементы (чаще всœего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени.

В исходном положении релœе внешний управляющий контакт S замкнут и на базу транзистора VT1 подается отрицательный потенциал источника питания GB. Данный транзистор при этом открыт, а потенциал базы транзистора VT2 положительный по отношению к его эмиттеру и он закрыт. В результате выходное релœе KV отключено. В исходном положении конденсатор С заряжен с показанной на рисунке полярностью обкладок.

Команда на начало отсчета времени подается при размыкании внешнего управляющего контакта К. После этого начинается разряд конденсатора С через резистор R2 и переход эммитер - база транзистора VT1. В результате разряда конденсатора транзистор VT1 закроется, на базе транзистора VT2 появится отрицательный потенциал и он откроется, при этом по обмотке релœе KV начнет протекать ток, оно сработает и переключит свои контакты. Отсчет времени закончится.

Выдержка времени такого релœе определяется временем разряда конденсатора С, ĸᴏᴛᴏᴩᴏᴇ зависит от его емкости и сопротивления резистора R2. Регулируя эти величины, можно установить требуемую выдержку времени релœе. Электронные релœе времени серии ВЛ обеспечивают выдержку времени от 0,1 с до 10 мин.

 
 

В пневматических релœе выдержка времени обеспечивается воздушным (пневматическим) замедлителœем (демпфером), управляемым с помощью электромагнита. Механическое релœе времени основано на механизме аналогично часовому.

Датчики скорости. Информацию о скорости ЭП можно получать, как от различных датчиков скорости, так и от самого двигателя. Скорость двигателœей постоянного и переменного тока определяет их электродвижущую силу. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, используя ЭДС в качестве измеряемой (контролируемой) переменной, можно получить информацию о скорости ЭП.

Электромеханическое релœе контроля скорости (РКС) работает по принципу асинхронного двигателя. Ротор такого релœе (рис.3) представляет собой постоянный магнит, соединœенный с валом двигателя, скорость которого измеряется. Постоянный магнит помещен внутри алюминиевого цилиндра 5, имеющего обмотку в виде беличьей клетки. Этот цилиндр может поворачиваться вокруг оси на небольшой угол и переключать с помощью упора 3 контакты 4 и 6. При неподвижном двигателœе упор занимает среднее положение и контакты релœе находятся в нормальном положении. При вращении двигателя, а следовательно, и магнита 1 даже с небольшой скоростью создается вращающий момент, под действием которого цилиндр 5 поворачивается и обеспечивает с помощью упора 3 переключение контактов 4. При скорости двигателя, близкой к нулю, цилиндр возвращается в среднее положение и контакты 4 переходят в свое нормальное состояние. Скорость, при которой переключаются контакты релœе, определяется положением настроечных винтов 2.

Рисунок 3 – Релœе контроля скорости (а), тахогенератор (б)

Релœе контроля скорости удобно использовать при автоматизации процесса торможения, когда требуется обеспечить отключение двигателя от сети после снижения его скорости до нуля.

Тахогенератор (ТГ) как датчик скорости двигателя обычно применяется в различных схемах управления. Пример его использования в разомкнутой схеме иллюстрирует рисунок 3, б. К якорю 2 тахогенератора подключена обмотка 4 релœе напряжения, последовательно с которой включен регулировочный резистор 3. Релœе срабатывает при определœенной скорости двигателя 1 исходя из положения движка реостата 3 и своими контактами осуществляет коммутацию соответствующих цепей управления.

В качестве источника информации о скорости может использоваться якорь двигателя постоянного тока при внесении его в схему тахометрического моста (рис. 4), который образуется резисторами 3 и 2 с сопротивлениями R1 и R2 обмотками якоря 1 с сопротивлением Rя и дополнительных полюсов 4 (сопротивлением RДП. В случае если подобрать сопротивления R1 и R2, так, чтобы соблюдалось условие

R1·Rя = R2·RДП

мост окажется сбалансированным и напряжение на его диагонали (между точками А и Б) не будет зависеть от тока якоря, а будет пропорционально скорости двигателя.

Схема тахометрического моста используется как в замкнутых, так и разомкнутых схемах управления. В последнем случае к точкам А и Б подсоединяется катушка релœе.

В некоторых случаях, когда не требуется большая точность, предпочтительной является простота. Сигнал, пропорциональный скорости может сниматься непосредственно со щеток ДПТ или фазного ротора АД.

Центробежное релœе скорости, выполненное по принципу центробежного регулятора скорости, вследствие своей громоздкости невысокой надежности в схемах ЭП применяется редко.

Датчики тока. В качестве датчиков тока в релœейно-контактных разомкнутых схемах используются главным образом релœе тока, их катушки, изготовленные из толстого провода с малым числом витков, непосредственно включаются в цепь контролируемого (регулируемого) тока двигателя. При достижении этим током уровней срабатывания или отпускания происходит коммутация контактов релœе тока, которые производят соответствующие переключения в схемах управления двигателœем.

Наиболее широко для этих целœей применяются релœе минимального и максимального токов серий РЭВ 830, РЭВ 312, РТ 40.

Датчики положения. К датчикам положения, которые широко используются в разомкнутых схемах управления ЭП, относятся путевые и конечные выключатели различных типов (рис.5).

       
 
   
Рисунок 5 – Условное графическое и буквенное обозначение путевых выключателœей
 

При достижении ЭП или исполнительным органом рабочей машины определœенных положений эти выключатели выдают сигналы, которые затем поступают в цепи управления, защиты и сигнализации. Конечные выключатели применяются для предотвращения выхода исполнительных органов из рабочей зоны (к примеру, моста подъемного крана за пределы подкрановых путей). Путевые выключатели используются для подачи команд управления в схему в определœенных точках пути исполнительных органов (к примеру, при подходе кабины лифта к этажу).

Путевые и конечные выключатели бывают бесконтактными и контактными. Последние исходя из вида привода их контактной системы делятся на вращающиеся, рычажные и нажимные.

Вращающиеся путевые и конечные выключатели имеют привод от валика, соединœенного с валом двигателя непосредственно или через редуктор. Размещено на реф.рфНа валике располагаются кулачковые шайбы, воздействующие на контактную систему выключателя при достижении валиком определœенного положения. При вращении вала двигателя в определœенном его положении кулачковые шайбы осуществляют переключение контактов выключателя.

Рычажные конечные и путевые выключатели имеют привод своей контактной системы от поворотного рычага, соединœенного с движущейся частью ЭП или исполнительного органа. Возврат рычага и контактов в исходное положение осуществляется с помощью пружины.

В нажимном выключателœе переключение контактов происходит при нажатии на его шток, возврат которого в исходное положение осуществляется под действием пружины. В качестве нажимных выключателœей применяются также микропереключатели, у которых при воздействии на шток происходит переключение упругого контакта.

Выпускаемые контактные путевые и конечные выключатели серий КУ 700; ВУ 150 и ВУ 250; ВК 200 и ВК 300; ВПК 1000,2000, 3000 позволяют коммутировать одну или две цепи переменного тока до 10 А и напряжении до 500 В и постоянного тока до 1,5 А при напряжении до 220 В.

 
 

Рисунок 6 – Индукционный датчик положения

Бесконтактный индукционный датчик положения (рис.6) состоит из разомкнутого магнитопровода с катушкой 2, параллельно которой включен конденсатор 6. Катушка с конденсатором в свою очередь включены в цепь переменного тока вместе с обмоткой 4. Когда якорь датчика 3, закрепленный на подвижной части ЭП или исполнительного органа рабочей машины, не замыкает магнитопровод (пунктирное изображение), индуктивное сопротивление катушки мало, в ее цепи проходит большой ток и релœе 4 включено. Когда якорь 3 переместится и займет положение над магнитопроводом индуктивное сопротивление катушки 2 возрастет и в цепи (за счёт подбора емкости конденсатора 6) наступит резонанс тока и резкое его снижение. Релœе 4 в результате снижения тока отключается, вызывает переключение его контактов 5 в цепи управления ЭП.

Потенциометрические, сельсинные и цифровые датчики положения применяются главным образом в замкнутых ЭП.

referatwork.ru

Датчики времени, скорости, тока и положения

 

 

 

 

 

 

 

 

 

 

 

 

 

Датчики времени, скорости, тока и положения

 

Для работы схем управления электропривода, в том числе и разомкнутого, необходима информация о текущих значениях его скорости, тока, момента, ЭДС и других координат, а также времени. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название измерительных преобразователей или датчиков.

Датчики времени. При построении схем управления по принципу времени в качестве датчиков используются различные реле времени - электромагнитные, моторные, электронные, анкерные и пневматические. Рассмотрим кратко их принцип действия и основные технические характеристики.

Электромагнитное реле времени состоит из неподвижной части магнитопровода 2, на котором установлена катушка 1 (рис. 1), и подвижной части магнитной системы (якорь 6) с установленными на ней контактами 8 и 9. При отсутствии напряжения на катушке якорь 6 под действием пружины 4 находится в поднятом положении.

 

Рис. 1. Электромагнитное реле времени: а - устройство; б - контакты

 

Особенностью конструкции реле времени является наличие на магнитопроводе 2, массивной медной трубки 3 (гильзы), которая и обеспечивает выдержку времени реле при отключении его катушки. Рассмотрим этот процесс подробнее. Включение реле происходит, как у обычного электромагнитного реле, подачей напряжения U на катушку 1 после замыкания контакта 10. Якорь 6, притягиваясь к сердечнику, осуществляет без выдержки времени переключение контактов 8 и 9.

Выдержка времени обеспечивается за счет замедления возврата якоря в исходное положение. При снятии с катушки напряжения спадающий магнитный поток создает в гильзе вихревые токи, которые, по правилу Ленца, своим магнитным потоком поддерживают основной поток. Другими словами, наличие гильзы замедляет (демпфирует) спадание магнитного потока, а тем самым и перемещение якоря и контактной системы в исходное (отключенное) положение. В соответствии с таким принципом действия электромагнитное реле времени обеспечивает выдержку при замыкании замыкающего контакта и замыкании размыкающего контакта (рис. 1, б).

Выдержка времени реле регулируется ступенчато путем установки латунной немагнитной прокладки 7 определенной толщины, закрепляемой на якоре 6 (уменьшение толщины прокладки вызывает увеличение выдержки реле и наоборот), или плавно за счет изменения натяжения пружины 4 с помощью гайки 5. Чем меньше будет затянута пружина, тем больше будет выдержка времени и наоборот.

Выдержка времени может быть получена у электромагнитного реле без установки гильзы путем закорачивания катушки после отключения ее от сети. В этом случае замкнутый контур, образованный катушкой и замыкающим ее контактом 11, играет роль электромагнитного демпфера. Однако выдержка времени в этом случае получается меньше, чем у реле с гильзой.

Промышленность выпускает несколько типов электромагнитных реле времени. Реле РЭВ 811 - РЭВ 818 обеспечивают выдержку времени от 0,25 до 5,5 с и изготовляются с катушками на напряжение постоянного тока 10,24,48, 100 и 220 В. Реле времени типа РЭВ 81 обеспечивают выдержку времени от 0,15 до 4 с.

Моторное (электромеханическое) реле времени в своей основе имеет специальный низкоскоростной двигатель и редуктор с большим передаточным числом, на выходном валу которого устанавливается по шкале уставок времени реле. Рычаг управляет работой вспомогательных контактов, которыми, в свою очередь, включается выходное электромагнитное реле. Работает такое реле времени следующим образом.

Начало отсчета времени соответствует подаче напряжения на двигатель, который, включившись, начинает вращаться и медленно поворачивать рычаг на валу редуктора. Через заданное время, определяемое начальным положением рычага, он доходит до вспомогательных контактов и замыкает их. Это приведет к включению выходного реле, которое одним из своих контактов отключает двигатель. На этом завершается отсчет выдержки времени.

Выпускаемое моторные реле времени типов Е 510 и РБ 4 обеспечивают выдержку времени до нескольких минут.

Электронные реле времени обычно в своих схемах используют различные полупроводниковые элементы (чаще всего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени (рис. 2).

 

Рис. 2. Электронное реле времени

 

В исходном положении внешний управляющий контакт К замкнут и на базу транзистора VT1 подан отрицательный потенциал источника питания GB. Транзистор открыт, при этом потенциал базы транзистора VT2 будет положительным по отношению к его эмиттеру и он будет закрыт. В результате выходное реле KV будет отключено. В исходном положении конденсатор С будет заряжен с показанной на рисунке полярностью своих обкладок.

Команда на начало отсчета времени подается при замыкании внешнего управляющего контакта К. после чего начинается разряд конденсатора С через резистор R2 и переход эмиттер - база транзистора VT1. В конце разряда транзистор VT1 закроется, что приведет к появлению на базе транзистора VT2 отрицательного потенциала. Он откроется, по обмотке реле KV начнет протекать ток, оно сработает и переключит свои контакты. Отсчет времени закончится.

Выдержка времени такого реле определяется временем разряда конденсатора С, которое зависит от величины его емкости и сопротивления резистора R2. Регулируя эти величины, мо

www.studsell.com

Датчики времени

Вопросы

  1. Датчики времени, скорости, тока и положения
  2. Бесконтактные логические элементы
  1. Датчики времени, скорости, тока и положения

Для управления электроприводом, в том числе и разомкнутым, необходима информация о текущих значениях скорости, тока, момента и координат, а также о времени. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название датчиков.

Датчики времени. При построении схем управления ЭП по принципу времени в качестве датчиков используются различные реле времени - электромагнитые, моторные, электронные и механические. Рассмотрим их принцип действия и основные технические характеристики.

Электромагнитное реле времени (рис. 1) состоит из неподвижной части магнитопровода 2, на котором установлена катушка 1; подвижной части магнитной системы - якоря 6 с контактами 8 и 9. При отсутствии напряжения на катушке якорь 6 с помощью пружины 4 удерживается в поднятом положении.

Особенностью конструкции реле времени является наличие в магнитопроводе 2 массивной медной трубки 3 (гильзы), которая обеспечивает выдержку времени при отключении катушки реле источника питания. Рассмотрим этот процесс подробнее.

Реле времени включается, как и обычное электромагнитное реле подачей напряжения на катушку 1 при замыкании контакта 10. При этом якорь 6, притягиваясь к сердечнику, осуществляет без выдержки времени переключение контактов 8 и 9. Необходимая выдержи времени обеспечивается замедлением возврата якоря в исходное положение, так как при снятии с катушки напряжения спадающий магнитный поток создает в гильзе 3 вихревые токи, которые (правило Ленца) своим магнитным потоком поддерживают основной поток. Другими словами, наличие гильзы замедляет (демпфирует) спад магнитного потока, а значит, и перемещение якоря и контактной системы в исходное (отключенное) положение. Таким образом обеспечивается выдержка времени при размыкании замыкающего контакта и замыкании размыкающего контакта (см. рис. 1, б).

Выдержка времени может регулироваться ступенчато за счет латунной немагнитной прокладки 7 определенной толщины, устанавливаемой на якоре 6 (уменьшение толщины прокладки вызывает увеличение выдержки реле и наоборот), или плавно за счет изменения натяжения пружины 4 с помощью гайки 5.

Рисунок 1 – Электромагнитное реле времени (а), контакт замыкающийся и размыкающийся с замедлением при возврате (б)

Выдержку времени электромагнитного реле можно обеспечить без установки гильзы 3, закорачивая катушку после отключения ее от сети. В этом случае замкнутый контур, образованный катушкой и замыкающим ее контактом 11, будет играть роль электромагнитного демпфера. Однако выдержка времени в этом случае получается меньше, чем при использовании гильзы. Реле серии РЭВ, обеспечивают выдержку времени от 0,25 до 5,5 с.

Моторное (электромеханическое) реле времени состоит из специального низкоскоростного двигателя и редуктора с большим передаточным числом, на выходном валу которого имеется рычаг, начальное положение которого устанавливается по шкале уставок времени. Рычаг управляет работой вспомогательных контактов, которыми включается выходное электромагнитное реле. Работает моторное реле времени следующим образом. Начало отсчета времени соответствует подаче напряжения на двигатель, который, включившись, начинает вращаться и медленно поворачивать рычаг на валу редуктора. Через заданное время, определяемое начальным положением, рычаг доходит до вспомогательных контактов и замыкает их, что приводит к включению выходного реле, которое одним из своих контактов отключает двигатель, завершая отсчет выдержки времени.

В электронных реле времени (рис. 2) обычно используются различные полупроводниковые элементы (чаще всего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени.

В исходном положении реле внешний управляющий контакт S замкнут и на базу транзистора VT1 подается отрицательный потенциал источника питания GB. Данный транзистор при этом открыт, а потенциал базы транзистора VT2 положительный по отношению к его эмиттеру и он закрыт. В результате выходное реле KV отключено. В исходном положении конденсатор С заряжен с показанной на рисунке полярностью обкладок.

Команда на начало отсчета времени подается при размыкании внешнего управляющего контакта К. После этого начинается разряд конденсатора С через резистор R2 и переход эммитер - база транзистора VT1. В результате разряда конденсатора транзистор VT1 закроется, на базе транзистора VT2 появится отрицательный потенциал и он откроется, при этом по обмотке реле KV начнет протекать ток, оно сработает и переключит свои контакты. Отсчет времени закончится.

Выдержка времени такого реле определяется временем разряда конденсатора С, которое зависит от его емкости и сопротивления резистора R2. Регулируя эти величины, можно установить требуемую выдержку времени реле. Электронные реле времени серии ВЛ обеспечивают выдержку времени от 0,1 с до 10 мин.

Рисунок 2 – Электронное реле времени

В пневматических реле выдержка времени обеспечивается воздушным (пневматическим) замедлителем (демпфером), управляемым с помощью электромагнита. Механическое реле времени основано на механизме аналогично часовому.

Датчики скорости. Информацию о скорости ЭП можно получать, как от различных датчиков скорости, так и от самого двигателя. Скорость двигателей постоянного и переменного тока определяет их электродвижущую силу. Таким образом, используя ЭДС в качестве измеряемой (контролируемой) переменной, можно получить информацию о скорости ЭП.

Электромеханическое реле контроля скорости (РКС) работает по принципу асинхронного двигателя. Ротор такого реле (рис.3) представляет собой постоянный магнит, соединенный с валом двигателя, скорость которого измеряется. Постоянный магнит помещен внутри алюминиевого цилиндра 5, имеющего обмотку в виде беличьей клетки. Этот цилиндр может поворачиваться вокруг оси на небольшой угол и переключать с помощью упора 3 контакты 4 и 6. При неподвижном двигателе упор занимает среднее положение и контакты реле находятся в нормальном положении. При вращении двигателя, а следовательно, и магнита 1 даже с небольшой скоростью создается вращающий момент, под действием которого цилиндр 5 поворачивается и обеспечивает с помощью упора 3 переключение контактов 4. При скорости двигателя, близкой к нулю, цилиндр возвращается в среднее положение и контакты 4 переходят в свое нормальное состояние. Скорость, при которой переключаются контакты реле, определяется положением настроечных винтов 2.

Рисунок 3 – Реле контроля скорости (а), тахогенератор (б)

Реле контроля скорости удобно использовать при автоматизации процесса торможения, когда требуется обеспечить отключение двигателя от сети после снижения его скорости до нуля.

Тахогенератор (ТГ) как датчик скорости двигателя обычно применяется в различных схемах управления. Пример его использования в разомкнутой схеме иллюстрирует рисунок 3, б. К якорю 2 тахогенератора подключена обмотка 4 реле напряжения, последовательно с которой включен регулировочный резистор 3. Реле срабатывает при определенной скорости двигателя 1 в зависимости от положения движка реостата 3 и своими контактами осуществляет коммутацию соответствующих цепей управления.

В качестве источника информации о скорости может использоваться якорь двигателя постоянного тока при внесении его в схему тахометрического моста (рис. 4), который образуется резисторами 3 и 2 с сопротивлениями R1 и R2 обмотками якоря 1 с сопротивлением Rя и дополнительных полюсов 4 (сопротивлением RДП. Если подобрать сопротивления R1 и R2, так, чтобы соблюдалось условие

R1·Rя = R2·RДП

мост окажется сбалансированным и напряжение на его диагонали (между точками А и Б) не будет зависеть от тока якоря, а будет пропорционально скорости двигателя.

Схема тахометрического моста используется как в замкнутых, так и разомкнутых схемах управления. В последнем случае к точкам А и Б подсоединяется катушка реле.

В некоторых случаях, когда не требуется большая точность, предпочтительной является простота. Сигнал, пропорциональный скорости может сниматься непосредственно со щеток ДПТ или фазного ротора АД.

Центробежное реле скорости, выполненное по принципу центробежного регулятора скорости, вследствие своей громоздкости невысокой надежности в схемах ЭП применяется редко.

Рисунок 4 – Схема тахометрического моста

Рисунок 4 – Схема тахометрического моста

Датчики тока. В качестве датчиков тока в релейно-контактных разомкнутых схемах используются главным образом реле тока, их катушки, изготовленные из толстого провода с малым числом витков, непосредственно включаются в цепь контролируемого (регулируемого) тока двигателя. При достижении этим током уровней срабатывания или отпускания происходит коммутация контактов реле тока, которые производят соответствующие переключения в схемах управления двигателем.

Наиболее широко для этих целей применяются реле минимального и максимального токов серий РЭВ 830, РЭВ 312, РТ 40.

Датчики положения. К датчикам положения, которые широко используются в разомкнутых схемах управления ЭП, относятся путевые и конечные выключатели различных типов (рис.5).

Рисунок 5 – Условное графическое и буквенное обозначение путевых выключателей

При достижении ЭП или исполнительным органом рабочей машины определенных положений эти выключатели выдают сигналы, которые затем поступают в цепи управления, защиты и сигнализации. Конечные выключатели применяются для предотвращения выхода исполнительных органов из рабочей зоны (например, моста подъемного крана за пределы подкрановых путей). Путевые выключатели используются для подачи команд управления в схему в определенных точках пути исполнительных органов (например, при подходе кабины лифта к этажу).

Путевые и конечные выключатели могут быть бесконтактными и контактными. Последние в зависимости от вида привода их контактной системы делятся на вращающиеся, рычажные и нажимные.

Вращающиеся путевые и конечные выключатели имеют привод от валика, соединенного с валом двигателя непосредственно или через редуктор. На валике располагаются кулачковые шайбы, воздействующие на контактную систему выключателя при достижении валиком определенного положения. При вращении вала двигателя в определенном его положении кулачковые шайбы осуществляют переключение контактов выключателя.

Рычажные конечные и путевые выключатели имеют привод своей контактной системы от поворотного рычага, соединенного с движущейся частью ЭП или исполнительного органа. Возврат рычага и контактов в исходное положение осуществляется с помощью пружины.

В нажимном выключателе переключение контактов происходит при нажатии на его шток, возврат которого в исходное положение осуществляется под действием пружины. В качестве нажимных выключателей применяются также микропереключатели, у которых при воздействии на шток происходит переключение упругого контакта.

Выпускаемые контактные путевые и конечные выключатели серий КУ 700; ВУ 150 и ВУ 250; ВК 200 и ВК 300; ВПК 1000,2000, 3000 позволяют коммутировать одну или две цепи переменного тока до 10 А и напряжении до 500 В и постоянного тока до 1,5 А при напряжении до 220 В.

Рисунок 6 – Индукционный датчик положения

Бесконтактный индукционный датчик положения (рис.6) состоит из разомкнутого магнитопровода с катушкой 2, параллельно которой включен конденсатор 6. Катушка с конденсатором в свою очередь включены в цепь переменного тока вместе с обмоткой 4. Когда якорь датчика 3, закрепленный на подвижной части ЭП или исполнительного органа рабочей машины, не замыкает магнитопровод (пунктирное изображение), индуктивное сопротивление катушки мало, в ее цепи проходит большой ток и реле 4 включено. Когда якорь 3 переместится и займет положение над магнитопроводом индуктивное сопротивление катушки 2 возрастет и в цепи (за счет подбора емкости конденсатора 6) наступит резонанс тока и резкое его снижение. Реле 4 в результате снижения тока отключается, вызывает переключение его контактов 5 в цепи управления ЭП.

Потенциометрические, сельсинные и цифровые датчики положения применяются главным образом в замкнутых ЭП.

bigpo.ru

Реле времени: типы и особенности применения

В этой статье мы расскажем вам о целом классе электронных устройств, работающих со временем. Такие реле широко применяются в системах автоматики, всевозможных механизмах, регуляторах и датчиках. В принцип работы заложен отсчет времени до срабатывания контактов. На сегодняшний день существуют устройства двух видов: цикличный таймер (вполне самостоятельное устройство) и промежуточное реле, когда с внешнего узла сигнал обрабатывается девайсом. Ниже мы рассмотрим типы и особенности применения реле времени, существующих на сегодняшний день.

Цикличные

Устройства цикличного типа генерируют выходные сигналы через выставленный интервал времени. Изначально это было механическое изделие, взаимодействующее с контактами через программируемый механический барабан. С появлением микропроцессоров появилась возможность создания агрегатов с огромным диапазоном параметров. Данный тип широко используют в системах автоматики для включения и отключения всевозможных механизмов.

Пример. Суточный бытовой таймер управляет освещением аквариума, террариума, теплицы, кормушками, поилками. Чаще всего реле времени используют для управления уличным освещением на приусадебной территории.

Розетка с таймером фото

В системах умный дом, таймер играет основную роль обеспечения комфорта. В заданное время включает и выключает отопление, свет, может вывести напоминание о событии. Кипятить воду в чайнике утром, включить стирку и прочее. Несут службу таймеры в медицине, науке, робототехнике и других отраслях жизнедеятельности человека. О том, как настроить розетку с таймером, мы рассказали в отдельной статье.

Схема умного дома

Промежуточные

Промежуточные реле времени устанавливаются в механизмы, которым нужна задержка сигнала на определенный момент. Они в свою очередь разделяются на подтипы:

  • электромагнитные;
  • пневматические;
  • моторные;
  • с часовым или анкерным механизмом;
  • электронные.

Рассмотрим устройство и назначение каждой разновидности.

Электромагнитные

Используются в цепях постоянного тока, где на катушке устройства добавлен отдельно короткозамкнутый виток и за счет остаточного поля происходит замедление на отпускание контактов или замыкание. Пределы регулирования до 5 секунд.

Электромагнитное

Чаще всего такие реле времени применяются в цепях управления разгоном и торможением электропривода.

Пневматические

Данный тип снабжен специальным пневматическим демпфером или диафрагмой, регулировка производится изменением размера воздушного отверстия. После поступления сигнала якорь тянет поршень, но не может сделать это мгновенно, пока воздух находится в демпфере. Через регулируемое отверстие задается время срабатывания. Регулирование возможно до 60 секунд.

Пневматический вид изделий

Реле времени пневматического типа часто используют для автоматического управления оборудованием, к примеру, металлорежущим станком. Помимо этого пневматические реле нашли свое применение в цепях управления приводом для ступенчатого регулирования, разгона и торможения.

Моторные

Сердце устройства синхронный двигатель, работающий от переменной сети 50 Гц. Сложное механическое устройство с возможностью установки задержки от нескольких секунд до десятков часов.

Мотор-реле

Моторные реле времени, собственно, как и анкерные, могут применяться в цепях защиты ВЛ для повторного включения.

С часовым или анкерным механизмом

Работают за счет взведенной пружины. Электромагнит заводит пружину, устройство начинает работу (принцип заводной игрушки) и замыкает контакты. Диапазон регулирования реле 0,1-20 сек.

Часовой механизм

О том, для чего они нужны, мы уже рассказали немного выше.

Электронные

Обширное семейство аналоговых и цифровых электронных устройств, использующие физические процессы в электронных схемах, заряд или разряд конденсатора, отсчет определенного числа импульсов.

Электронное исполнение

Современный таймер на DIN-рейку фото

С помощью реле электронного типа можно неплохо экономить дома, к примеру, возьмем свет в коридоре, кладовке или подъезде. Нажимая кнопку мы включаем свет. По прошествии определенного времени он отключается, этого периода должно хватить на поиски предмета в коридоре, кладовке или попадание в квартиру. Свет без надобности не горит, по забывчивости оставленный включенным.

Наглядно увидеть, какие есть реле времени и какой принцип действия у каждого типа исполнения, вы можете на видео ниже:

Принцип работы существующих таймеров

Вот и все, что хотелось рассказать вам об особенностях применения разных типов реле времени. Теперь вы знаете, какие бывают разновидности таймеров и как они работают.

Будет интересно прочитать:

samelectrik.ru

Датчики времени

Вопросы

  1. Датчики времени, скорости, тока и положения
  2. Бесконтактные логические элементы
  1. Датчики времени, скорости, тока и положения

Для управления электроприводом, в том числе и разомкнутым, необходима информация о текущих значениях скорости, тока, момента и координат, а также о времени. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название датчиков.

Датчики времени. При построении схем управления ЭП по принципу времени в качестве датчиков используются различные реле времени - электромагнитые, моторные, электронные и механические. Рассмотрим их принцип действия и основные технические характеристики.

Электромагнитное реле времени (рис. 1) состоит из неподвижной части магнитопровода 2, на котором установлена катушка 1; подвижной части магнитной системы - якоря 6 с контактами 8 и 9. При отсутствии напряжения на катушке якорь 6 с помощью пружины 4 удерживается в поднятом положении.

Особенностью конструкции реле времени является наличие в магнитопроводе 2 массивной медной трубки 3 (гильзы), которая обеспечивает выдержку времени при отключении катушки реле источника питания. Рассмотрим этот процесс подробнее.

Реле времени включается, как и обычное электромагнитное реле подачей напряжения на катушку 1 при замыкании контакта 10. При этом якорь 6, притягиваясь к сердечнику, осуществляет без выдержки времени переключение контактов 8 и 9. Необходимая выдержи времени обеспечивается замедлением возврата якоря в исходное положение, так как при снятии с катушки напряжения спадающий магнитный поток создает в гильзе 3 вихревые токи, которые (правило Ленца) своим магнитным потоком поддерживают основной поток. Другими словами, наличие гильзы замедляет (демпфирует) спад магнитного потока, а значит, и перемещение якоря и контактной системы в исходное (отключенное) положение. Таким образом обеспечивается выдержка времени при размыкании замыкающего контакта и замыкании размыкающего контакта (см. рис. 1, б).

Выдержка времени может регулироваться ступенчато за счет латунной немагнитной прокладки 7 определенной толщины, устанавливаемой на якоре 6 (уменьшение толщины прокладки вызывает увеличение выдержки реле и наоборот), или плавно за счет изменения натяжения пружины 4 с помощью гайки 5.

Рисунок 1 – Электромагнитное реле времени (а), контакт замыкающийся и размыкающийся с замедлением при возврате (б)

Выдержку времени электромагнитного реле можно обеспечить без установки гильзы 3, закорачивая катушку после отключения ее от сети. В этом случае замкнутый контур, образованный катушкой и замыкающим ее контактом 11, будет играть роль электромагнитного демпфера. Однако выдержка времени в этом случае получается меньше, чем при использовании гильзы. Реле серии РЭВ, обеспечивают выдержку времени от 0,25 до 5,5 с.

Моторное (электромеханическое) реле времени состоит из специального низкоскоростного двигателя и редуктора с большим передаточным числом, на выходном валу которого имеется рычаг, начальное положение которого устанавливается по шкале уставок времени. Рычаг управляет работой вспомогательных контактов, которыми включается выходное электромагнитное реле. Работает моторное реле времени следующим образом. Начало отсчета времени соответствует подаче напряжения на двигатель, который, включившись, начинает вращаться и медленно поворачивать рычаг на валу редуктора. Через заданное время, определяемое начальным положением, рычаг доходит до вспомогательных контактов и замыкает их, что приводит к включению выходного реле, которое одним из своих контактов отключает двигатель, завершая отсчет выдержки времени.

В электронных реле времени (рис. 2) обычно используются различные полупроводниковые элементы (чаще всего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени.

В исходном положении реле внешний управляющий контакт S замкнут и на базу транзистора VT1 подается отрицательный потенциал источника питания GB. Данный транзистор при этом открыт, а потенциал базы транзистора VT2 положительный по отношению к его эмиттеру и он закрыт. В результате выходное реле KV отключено. В исходном положении конденсатор С заряжен с показанной на рисунке полярностью обкладок.

Команда на начало отсчета времени подается при размыкании внешнего управляющего контакта К. После этого начинается разряд конденсатора С через резистор R2 и переход эммитер - база транзистора VT1. В результате разряда конденсатора транзистор VT1 закроется, на базе транзистора VT2 появится отрицательный потенциал и он откроется, при этом по обмотке реле KV начнет протекать ток, оно сработает и переключит свои контакты. Отсчет времени закончится.

Выдержка времени такого реле определяется временем разряда конденсатора С, которое зависит от его емкости и сопротивления резистора R2. Регулируя эти величины, можно установить требуемую выдержку времени реле. Электронные реле времени серии ВЛ обеспечивают выдержку времени от 0,1 с до 10 мин.

Рисунок 2 – Электронное реле времени

В пневматических реле выдержка времени обеспечивается воздушным (пневматическим) замедлителем (демпфером), управляемым с помощью электромагнита. Механическое реле времени основано на механизме аналогично часовому.

Датчики скорости. Информацию о скорости ЭП можно получать, как от различных датчиков скорости, так и от самого двигателя. Скорость двигателей постоянного и переменного тока определяет их электродвижущую силу. Таким образом, используя ЭДС в качестве измеряемой (контролируемой) переменной, можно получить информацию о скорости ЭП.

Электромеханическое реле контроля скорости (РКС) работает по принципу асинхронного двигателя. Ротор такого реле (рис.3) представляет собой постоянный магнит, соединенный с валом двигателя, скорость которого измеряется. Постоянный магнит помещен внутри алюминиевого цилиндра 5, имеющего обмотку в виде беличьей клетки. Этот цилиндр может поворачиваться вокруг оси на небольшой угол и переключать с помощью упора 3 контакты 4 и 6. При неподвижном двигателе упор занимает среднее положение и контакты реле находятся в нормальном положении. При вращении двигателя, а следовательно, и магнита 1 даже с небольшой скоростью создается вращающий момент, под действием которого цилиндр 5 поворачивается и обеспечивает с помощью упора 3 переключение контактов 4. При скорости двигателя, близкой к нулю, цилиндр возвращается в среднее положение и контакты 4 переходят в свое нормальное состояние. Скорость, при которой переключаются контакты реле, определяется положением настроечных винтов 2.

Рисунок 3 – Реле контроля скорости (а), тахогенератор (б)

Реле контроля скорости удобно использовать при автоматизации процесса торможения, когда требуется обеспечить отключение двигателя от сети после снижения его скорости до нуля.

Тахогенератор (ТГ) как датчик скорости двигателя обычно применяется в различных схемах управления. Пример его использования в разомкнутой схеме иллюстрирует рисунок 3, б. К якорю 2 тахогенератора подключена обмотка 4 реле напряжения, последовательно с которой включен регулировочный резистор 3. Реле срабатывает при определенной скорости двигателя 1 в зависимости от положения движка реостата 3 и своими контактами осуществляет коммутацию соответствующих цепей управления.

В качестве источника информации о скорости может использоваться якорь двигателя постоянного тока при внесении его в схему тахометрического моста (рис. 4), который образуется резисторами 3 и 2 с сопротивлениями R1 и R2 обмотками якоря 1 с сопротивлением Rя и дополнительных полюсов 4 (сопротивлением RДП. Если подобрать сопротивления R1 и R2, так, чтобы соблюдалось условие

R1·Rя = R2·RДП

мост окажется сбалансированным и напряжение на его диагонали (между точками А и Б) не будет зависеть от тока якоря, а будет пропорционально скорости двигателя.

Схема тахометрического моста используется как в замкнутых, так и разомкнутых схемах управления. В последнем случае к точкам А и Б подсоединяется катушка реле.

В некоторых случаях, когда не требуется большая точность, предпочтительной является простота. Сигнал, пропорциональный скорости может сниматься непосредственно со щеток ДПТ или фазного ротора АД.

Центробежное реле скорости, выполненное по принципу центробежного регулятора скорости, вследствие своей громоздкости невысокой надежности в схемах ЭП применяется редко.

Рисунок 4 – Схема тахометрического моста

Рисунок 4 – Схема тахометрического моста

Датчики тока. В качестве датчиков тока в релейно-контактных разомкнутых схемах используются главным образом реле тока, их катушки, изготовленные из толстого провода с малым числом витков, непосредственно включаются в цепь контролируемого (регулируемого) тока двигателя. При достижении этим током уровней срабатывания или отпускания происходит коммутация контактов реле тока, которые производят соответствующие переключения в схемах управления двигателем.

Наиболее широко для этих целей применяются реле минимального и максимального токов серий РЭВ 830, РЭВ 312, РТ 40.

Датчики положения. К датчикам положения, которые широко используются в разомкнутых схемах управления ЭП, относятся путевые и конечные выключатели различных типов (рис.5).

Рисунок 5 – Условное графическое и буквенное обозначение путевых выключателей

При достижении ЭП или исполнительным органом рабочей машины определенных положений эти выключатели выдают сигналы, которые затем поступают в цепи управления, защиты и сигнализации. Конечные выключатели применяются для предотвращения выхода исполнительных органов из рабочей зоны (например, моста подъемного крана за пределы подкрановых путей). Путевые выключатели используются для подачи команд управления в схему в определенных точках пути исполнительных органов (например, при подходе кабины лифта к этажу).

Путевые и конечные выключатели могут быть бесконтактными и контактными. Последние в зависимости от вида привода их контактной системы делятся на вращающиеся, рычажные и нажимные.

Вращающиеся путевые и конечные выключатели имеют привод от валика, соединенного с валом двигателя непосредственно или через редуктор. На валике располагаются кулачковые шайбы, воздействующие на контактную систему выключателя при достижении валиком определенного положения. При вращении вала двигателя в определенном его положении кулачковые шайбы осуществляют переключение контактов выключателя.

Рычажные конечные и путевые выключатели имеют привод своей контактной системы от поворотного рычага, соединенного с движущейся частью ЭП или исполнительного органа. Возврат рычага и контактов в исходное положение осуществляется с помощью пружины.

В нажимном выключателе переключение контактов происходит при нажатии на его шток, возврат которого в исходное положение осуществляется под действием пружины. В качестве нажимных выключателей применяются также микропереключатели, у которых при воздействии на шток происходит переключение упругого контакта.

Выпускаемые контактные путевые и конечные выключатели серий КУ 700; ВУ 150 и ВУ 250; ВК 200 и ВК 300; ВПК 1000,2000, 3000 позволяют коммутировать одну или две цепи переменного тока до 10 А и напряжении до 500 В и постоянного тока до 1,5 А при напряжении до 220 В.

Рисунок 6 – Индукционный датчик положения

Бесконтактный индукционный датчик положения (рис.6) состоит из разомкнутого магнитопровода с катушкой 2, параллельно которой включен конденсатор 6. Катушка с конденсатором в свою очередь включены в цепь переменного тока вместе с обмоткой 4. Когда якорь датчика 3, закрепленный на подвижной части ЭП или исполнительного органа рабочей машины, не замыкает магнитопровод (пунктирное изображение), индуктивное сопротивление катушки мало, в ее цепи проходит большой ток и реле 4 включено. Когда якорь 3 переместится и займет положение над магнитопроводом индуктивное сопротивление катушки 2 возрастет и в цепи (за счет подбора емкости конденсатора 6) наступит резонанс тока и резкое его снижение. Реле 4 в результате снижения тока отключается, вызывает переключение его контактов 5 в цепи управления ЭП.

Потенциометрические, сельсинные и цифровые датчики положения применяются главным образом в замкнутых ЭП.

bigpo.ru

Датчики времени, скорости, тока и положения — iitu

Бесконтактные логические элементы

Датчики времени, скорости, тока и положения

Вопросы

Средства управления разомкнутых электроприводов

Лекция 4

Для управления электроприводом, в том числе и разомкнутым, необходима информация о текущих значениях скорости, тока, момента и координат, а также о времени. Устройства, которые выдают подобную информацию в виде электрических сигналов, получили название датчиков.

Датчики времени. При построении схем управления ЭП по принципу времени в качестве датчиков используются различные реле времени — электромагнитые, моторные, электронные и механические. Рассмотрим их принцип действия и основные технические характеристики.

Электромагнитное реле времени (рис. 1) состоит из неподвижной части магнитопровода 2, на котором установлена катушка 1; подвижной части магнитной системы — якоря 6 с контактами 8 и 9. При отсутствии напряжения на катушке якорь 6 с помощью пружины 4 удерживается в поднятом положении.

Особенностью конструкции реле времени является наличие в магнитопроводе 2 массивной медной трубки 3 (гильзы), которая обеспечивает выдержку времени при отключении катушки реле источника питания. Рассмотрим этот процесс подробнее.

Реле времени включается, как и обычное электромагнитное реле подачей напряжения на катушку 1 при замыкании контакта 10. При этом якорь 6, притягиваясь к сердечнику, осуществляет без выдержки времени переключение контактов 8 и 9. Необходимая выдержи времени обеспечивается замедлением возврата якоря в исходное положение, так как при снятии с катушки напряжения спадающий магнитный поток создает в гильзе 3 вихревые токи, которые (правило Ленца) своим магнитным потоком поддерживают основной поток. Другими словами, наличие гильзы замедляет (демпфирует) спад магнитного потока, а значит, и перемещение якоря и контактной системы в исходное (отключенное) положение. Таким образом обеспечивается выдержка времени при размыкании замыкающего контакта и замыкании размыкающего контакта (см. рис. 1, б).

Выдержка времени может регулироваться ступенчато за счет латунной немагнитной прокладки 7 определенной толщины, устанавливаемой на якоре 6 (уменьшение толщины прокладки вызывает увеличение выдержки реле и наоборот), или плавно за счет изменения натяжения пружины 4 с помощью гайки 5.

Рисунок 1 – Электромагнитное реле времени (а), контакт замыкающийся и размыкающийся с замедлением при возврате (б)

Выдержку времени электромагнитного реле можно обеспечить без установки гильзы 3, закорачивая катушку после отключения ее от сети. В этом случае замкнутый контур, образованный катушкой и замыкающим ее контактом 11, будет играть роль электромагнитного демпфера. Однако выдержка времени в этом случае получается меньше, чем при использовании гильзы. Реле серии РЭВ, обеспечивают выдержку времени от 0,25 до 5,5 с.

Моторное (электромеханическое) реле времени состоит из специального низкоскоростного двигателя и редуктора с большим передаточным числом, на выходном валу которого имеется рычаг, начальное положение которого устанавливается по шкале уставок времени. Рычаг управляет работой вспомогательных контактов, которыми включается выходное электромагнитное реле. Работает моторное реле времени следующим образом. Начало отсчета времени соответствует подаче напряжения на двигатель, который, включившись, начинает вращаться и медленно поворачивать рычаг на валу редуктора. Через заданное время, определяемое начальным положением, рычаг доходит до вспомогательных контактов и замыкает их, что приводит к включению выходного реле, которое одним из своих контактов отключает двигатель, завершая отсчет выдержки времени.

В электронных реле времени (рис. 2) обычно используются различные полупроводниковые элементы (чаще всего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени.

В исходном положении реле внешний управляющий контакт S замкнут и на базу транзистора VT1 подается отрицательный потенциал источника питания GB. Данный транзистор при этом открыт, а потенциал базы транзистора VT2 положительный по отношению к его эмиттеру и он закрыт. В результате выходное реле KV отключено. В исходном положении конденсатор С заряжен с показанной на рисунке полярностью обкладок.

Команда на начало отсчета времени подается при размыкании внешнего управляющего контакта К. После этого начинается разряд конденсатора С через резистор R2 и переход эммитер — база транзистора VT1. В результате разряда конденсатора транзистор VT1 закроется, на базе транзистора VT2 появится отрицательный потенциал и он откроется, при этом по обмотке реле KV начнет протекать ток, оно сработает и переключит свои контакты. Отсчет времени закончится.

Выдержка времени такого реле определяется временем разряда конденсатора С, которое зависит от его емкости и сопротивления резистора R2. Регулируя эти величины, можно установить требуемую выдержку времени реле. Электронные реле времени серии ВЛ обеспечивают выдержку времени от 0,1 с до 10 мин.

В пневматических реле выдержка времени обеспечивается воздушным (пневматическим) замедлителем (демпфером), управляемым с помощью электромагнита. Механическое реле времени основано на механизме аналогично часовому.

Датчики скорости. Информацию о скорости ЭП можно получать, как от различных датчиков скорости, так и от самого двигателя. Скорость двигателей постоянного и переменного тока определяет их электродвижущую силу. Таким образом, используя ЭДС в качестве измеряемой (контролируемой) переменной, можно получить информацию о скорости ЭП.

Электромеханическое реле контроля скорости (РКС) работает по принципу асинхронного двигателя. Ротор такого реле (рис.3) представляет собой постоянный магнит, соединенный с валом двигателя, скорость которого измеряется. Постоянный магнит помещен внутри алюминиевого цилиндра 5, имеющего обмотку в виде беличьей клетки. Этот цилиндр может поворачиваться вокруг оси на небольшой угол и переключать с помощью упора 3 контакты 4 и 6. При неподвижном двигателе упор занимает среднее положение и контакты реле находятся в нормальном положении. При вращении двигателя, а следовательно, и магнита 1 даже с небольшой скоростью создается вращающий момент, под действием которого цилиндр 5 поворачивается и обеспечивает с помощью упора 3 переключение контактов 4. При скорости двигателя, близкой к нулю, цилиндр возвращается в среднее положение и контакты 4 переходят в свое нормальное состояние. Скорость, при которой переключаются контакты реле, определяется положением настроечных винтов 2.

Рисунок 3 – Реле контроля скорости (а), тахогенератор (б)

Реле контроля скорости удобно использовать при автоматизации процесса торможения, когда требуется обеспечить отключение двигателя от сети после снижения его скорости до нуля.

Тахогенератор (ТГ) как датчик скорости двигателя обычно применяется в различных схемах управления. Пример его использования в разомкнутой схеме иллюстрирует рисунок 3, б. К якорю 2 тахогенератора подключена обмотка 4 реле напряжения, последовательно с которой включен регулировочный резистор 3. Реле срабатывает при определенной скорости двигателя 1 в зависимости от положения движка реостата 3 и своими контактами осуществляет коммутацию соответствующих цепей управления.

В качестве источника информации о скорости может использоваться якорь двигателя постоянного тока при внесении его в схему тахометрического моста (рис. 4), который образуется резисторами 3 и 2 с сопротивлениями R1 и R2 обмотками якоря 1 с сопротивлением Rя и дополнительных полюсов 4 (сопротивлением RДП. Если подобрать сопротивления R1 и R2, так, чтобы соблюдалось условие

R1·Rя = R2·RДП

мост окажется сбалансированным и напряжение на его диагонали (между точками А и Б) не будет зависеть от тока якоря, а будет пропорционально скорости двигателя.

Схема тахометрического моста используется как в замкнутых, так и разомкнутых схемах управления. В последнем случае к точкам А и Б подсоединяется катушка реле.

В некоторых случаях, когда не требуется большая точность, предпочтительной является простота. Сигнал, пропорциональный скорости может сниматься непосредственно со щеток ДПТ или фазного ротора АД.

Центробежное реле скорости, выполненное по принципу центробежного регулятора скорости, вследствие своей громоздкости невысокой надежности в схемах ЭП применяется редко.

Датчики тока. В качестве датчиков тока в релейно-контактных разомкнутых схемах используются главным образом реле тока, их катушки, изготовленные из толстого провода с малым числом витков, непосредственно включаются в цепь контролируемого (регулируемого) тока двигателя. При достижении этим током уровней срабатывания или отпускания происходит коммутация контактов реле тока, которые производят соответствующие переключения в схемах управления двигателем.

Наиболее широко для этих целей применяются реле минимального и максимального токов серий РЭВ 830, РЭВ 312, РТ 40.

Датчики положения. К датчикам положения, которые широко используются в разомкнутых схемах управления ЭП, относятся путевые и конечные выключатели различных типов (рис.5).

Рисунок 5 – Условное графическое и буквенное обозначение путевых выключателей

При достижении ЭП или исполнительным органом рабочей машины определенных положений эти выключатели выдают сигналы, которые затем поступают в цепи управления, защиты и сигнализации. Конечные выключатели применяются для предотвращения выхода исполнительных органов из рабочей зоны (например, моста подъемного крана за пределы подкрановых путей). Путевые выключатели используются для подачи команд управления в схему в определенных точках пути исполнительных органов (например, при подходе кабины лифта к этажу).

Путевые и конечные выключатели могут быть бесконтактными и контактными. Последние в зависимости от вида привода их контактной системы делятся на вращающиеся, рычажные и нажимные.

Вращающиеся путевые и конечные выключатели имеют привод от валика, соединенного с валом двигателя непосредственно или через редуктор. На валике располагаются кулачковые шайбы, воздействующие на контактную систему выключателя при достижении валиком определенного положения. При вращении вала двигателя в определенном его положении кулачковые шайбы осуществляют переключение контактов выключателя.

Рычажные конечные и путевые выключатели имеют привод своей контактной системы от поворотного рычага, соединенного с движущейся частью ЭП или исполнительного органа. Возврат рычага и контактов в исходное положение осуществляется с помощью пружины.

В нажимном выключателе переключение контактов происходит при нажатии на его шток, возврат которого в исходное положение осуществляется под действием пружины. В качестве нажимных выключателей применяются также микропереключатели, у которых при воздействии на шток происходит переключение упругого контакта.

Выпускаемые контактные путевые и конечные выключатели серий КУ 700; ВУ 150 и ВУ 250; ВК 200 и ВК 300; ВПК 1000,2000, 3000 позволяют коммутировать одну или две цепи переменного тока до 10 А и напряжении до 500 В и постоянного тока до 1,5 А при напряжении до 220 В.

Рисунок 6 – Индукционный датчик положения

Бесконтактный индукционный датчик положения (рис.6) состоит из разомкнутого магнитопровода с катушкой 2, параллельно которой включен конденсатор 6. Катушка с конденсатором в свою очередь включены в цепь переменного тока вместе с обмоткой 4. Когда якорь датчика 3, закрепленный на подвижной части ЭП или исполнительного органа рабочей машины, не замыкает магнитопровод (пунктирное изображение), индуктивное сопротивление катушки мало, в ее цепи проходит большой ток и реле 4 включено. Когда якорь 3 переместится и займет положение над магнитопроводом индуктивное сопротивление катушки 2 возрастет и в цепи (за счет подбора емкости конденсатора 6) наступит резонанс тока и резкое его снижение. Реле 4 в результате снижения тока отключается, вызывает переключение его контактов 5 в цепи управления ЭП.

Потенциометрические, сельсинные и цифровые датчики положения применяются главным образом в замкнутых ЭП.

Внимание, только СЕГОДНЯ!

iitu.ru


Смотрите также